你还在为考试焦头烂额?找我们就对了!

我们知道现在是考试月,你正在为了考试复习到焦头烂额。为了让更多留学生在备考与学习季更轻松,我们决定将Gold会员限时免费开放至2025年12月31日!原价£29.99每月,如今登录即享!无门槛领取。

助你高效冲刺备考!

题目
题目

BUSFIN 4229 SP2025 (4930) FINAL EXAM SP 25- Requires Respondus LockDown Browser

单项选择题

In the binomial option pricing model, how is the asset price assumed to behave in each time period? 

选项
A.It remains constant until expiration
B.It adjusts continuously based on interest rate movements
C.It follows a normal distribution
D.It can move only up and down by a specified amount
查看解析

查看解析

标准答案
Please login to view
思路分析
When evaluating how the binomial option pricing model assumes asset prices behave in each time period, one must compare each statement to the standard binomial framework. Option 1: 'It remains constant until expiration' This is inconsistent with the binomial model, which envisions discrete potential mo......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

For some value of p, the payoff associated with node F is 4045.16, and the payoff associated with G is -842.99.  What is the payoff associated with node C?

Question textThe following information refers to parts A-B below, select the right answer from the drop-down menu. Consider a three period binomial time-state model in which there are two securities, a bond and a stock. The bond price increases [math: 2%]2\% of its prior value in every period and its initial price is 1. The payments made by the stock are shown in the binomial tree below: The [math: Patom]\mathbf {P_{atom}} vector represents the atomic (time-state) prices of elementary payment for states [math: g], [math: b], [math: gg], [math: gb], [math: bg] and [math: bb], respectively, rounded to 4 decimal digits. [math: Patom=(0.3922,0.5882,0.1538,0.2307,0.2307,?)] \mathbf {P_{atom}}=(0.3922, 0.5882, 0.1538, 0.2307, 0.2307, ?) A) The discount factor of period 1 is: Answer 1 Question 7[select: , 0.30, 0.83, 0.98, 1.94, none of the above] B) The atomic security price of state [math: bb] is equal to: Answer 2 Question 7[select: , 0.1560, 0.2360, 0.2560, 0.3460, 0.4060]

Question textThe following information refers to parts A-B below, select the right answer from the drop-down menu. Consider a three period binomial time-state model in which there are two securities, a bond and a stock. The bond price increases [math: 2%]2\% of its prior value in every period and its initial price is 1. The payments made by the stock are shown in the binomial tree below: The [math: Patom]\mathbf {P_{atom}} vector represents the atomic (time-state) prices of elementary payment for states [math: g], [math: b], [math: gg], [math: gb], [math: bg] and [math: bb], respectively, rounded to 4 decimal digits. [math: Patom=(0.3922,0.5882,0.1538,0.2307,0.2307,?)] \mathbf {P_{atom}}=(0.3922, 0.5882, 0.1538, 0.2307, 0.2307, ?) A) The discount factor of period 1 is: Answer 1 Question 5[select: , 0.30, 0.83, 0.98, 1.94, none of the above] B) The atomic security price of state [math: bb] is equal to: Answer 2 Question 5[select: , 0.1560, 0.2360, 0.2560, 0.3460, 0.4060]

Question textThe following information refers to parts A-B below, select the right answer from the drop-down menu. Consider a three period binomial time-state model in which there are two securities, a bond and a stock. The bond price increases [math: 2%]2\% of its prior value in every period and its initial price is 1. The payments made by the stock are shown in the binomial tree below: The [math: Patom]\mathbf {P_{atom}} vector represents the atomic (time-state) prices of elementary payment for states [math: g], [math: b], [math: gg], [math: gb], [math: bg] and [math: bb], respectively, rounded to 4 decimal digits. [math: Patom=(0.3922,0.5882,0.1538,0.2307,0.2307,?)] \mathbf {P_{atom}}=(0.3922, 0.5882, 0.1538, 0.2307, 0.2307, ?) A) The discount factor of period 1 is: Answer 1 Question 3[select: , 0.30, 0.83, 0.98, 1.94, none of the above] B) The atomic security price of state [math: bb] is equal to: Answer 2 Question 3[select: , 0.1560, 0.2360, 0.2560, 0.3460, 0.4060]

更多留学生实用工具

为了让更多留学生在备考与学习季更轻松,我们决定将Gold 会员限时免费开放至2025年12月31日!