题目
FINTECH 540.01.Fa25 Final Exam
单项选择题
On scaled dot-product attention and training stability of a transformer: I Without scaling by 𝐷 𝑘 , the variance of the dot product 𝑞 𝑛 ⊤ 𝑘 𝑚 grows with dimensionality, producing large logits that can saturate the softmax. II Scaling by 𝐷 𝑘 primarily solves exploding-gradient problems inside the value projection 𝑉 . III The softmax-normalized matrix S o f t m a x ( 𝑄 𝐾 ⊤ ) is applied row-wise, making each row represent how strongly a query attends to all keys. IV Scaled dot-product attention computes A t t e n t i o n ( 𝑄 , 𝐾 , 𝑉 ) = S o f t m a x ! ( 𝑄 𝐾 ⊤ 𝐷 𝑘 ) 𝑉 , and the resulting matrix always has the same dimension as 𝑉 .
查看解析
标准答案
Please login to view
思路分析
Let’s parse the statements about scaled dot-product attention and training stability in transformers, and test each one against the standard formulation.
Option I: 'Without scaling by Dk, the variance of the dot product q_n^⊤ k_m grows with dimensionality, producing large logits that can saturate the softmax.' This is correct in spirit. The unscaled dot product between Q and K tends to have variance that grows with the dimensionality Dk, which makes the distribution produced by softmax very peaky as Dk increases. Scaling by sqrt(Dk) is introduced precisely to counteract this by keeping the variance of QK^⊤/√Dk roughly constant regardless of Dk. The claim......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Which innovation is at the core of the transformer architecture and enables modeling long-range dependencies effectively?
As defined in Attention is All You Need, what is the size of the cross-attention matrix between the encoder and decoder given the following English to Spanish translation: I am very handsome -> Soy muy guapo Please assume the following: d_k = d_q = 64 d_v = 32 Please ignore the <SOS> and <EOS> tokens. cross-attention means Attention(Q, K, V) NOTE: Please round to the nearest integer. [Fill in the blank] rows[Fill in the blank] columns
Which of the following attention models uses a subset of the input to derive the output, and can not be trained directly with gradient methods?
Why is the attention mechanism particularly suitable for modeling financial time series?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!