题目
11785/11685/11485 Quiz-09
单项选择题
As explained in the lecture, in sequence-to-sequence learning, attention is a probability distribution over Encoder’s input values Encoder’s hidden state values Decoder’s hidden state values Decoder’s input values Encoder’s last state value None of the above (Select all that apply) Hint: Lec 18, Slide 20-62
查看解析
标准答案
Please login to view
思路分析
In sequence-to-sequence learning with attention, the model learns to align each step of the decoder with specific parts of the input sequence processed by the encoder. This alignment is represented as a probability distribution over the encoder-side representations that the decoder can attend to during generation.
Because attention weights are comput......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
On scaled dot-product attention and training stability of a transformer: I Without scaling by 𝐷 𝑘 , the variance of the dot product 𝑞 𝑛 ⊤ 𝑘 𝑚 grows with dimensionality, producing large logits that can saturate the softmax. II Scaling by 𝐷 𝑘 primarily solves exploding-gradient problems inside the value projection 𝑉 . III The softmax-normalized matrix S o f t m a x ( 𝑄 𝐾 ⊤ ) is applied row-wise, making each row represent how strongly a query attends to all keys. IV Scaled dot-product attention computes A t t e n t i o n ( 𝑄 , 𝐾 , 𝑉 ) = S o f t m a x ! ( 𝑄 𝐾 ⊤ 𝐷 𝑘 ) 𝑉 , and the resulting matrix always has the same dimension as 𝑉 .
Which innovation is at the core of the transformer architecture and enables modeling long-range dependencies effectively?
As defined in Attention is All You Need, what is the size of the cross-attention matrix between the encoder and decoder given the following English to Spanish translation: I am very handsome -> Soy muy guapo Please assume the following: d_k = d_q = 64 d_v = 32 Please ignore the <SOS> and <EOS> tokens. cross-attention means Attention(Q, K, V) NOTE: Please round to the nearest integer. [Fill in the blank] rows[Fill in the blank] columns
Which of the following attention models uses a subset of the input to derive the output, and can not be trained directly with gradient methods?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!