题目
题目

BU.232.630.W4.SP25 Quiz 2

单项选择题

Consider an investor who lives 2 periods ( 𝑡 and 𝑡 + 1 ). She has income 𝑒 𝑡 in the first period and 𝑒 𝑡 + 1 in the second period. The investor buys 𝜃 shares of an asset at price 𝑝 𝑡 in the first period, and receives an uncertain payoff 𝑥 𝑡 + 1 = 𝑝 𝑡 + 1 + 𝑑 𝑡 + 1 in the second period. Her investment decision is thus described by the following maximization problem: 𝑚 𝑎 𝑥 𝜃 [ 𝑢 ( 𝑐 𝑡 ) + 𝛽 𝔼 𝑡 ( 𝑢 ( 𝑐 𝑡 + 1 ) ) ] . Assuming that the utility function is 𝑢 ( 𝑐 𝑡 ) = 𝑐 𝑡 𝛼 𝛼 what is the equation for the price of the asset in period 𝑡 as a function of tomorrow’s payoffs?

选项
A.𝑝 𝑡 = 𝔼 𝑡 [ 𝛽 ( 𝑐 𝑡 + 1 𝑐 𝑡 ) 𝛼 − 1 𝑥 𝑡 + 1 ]
B.𝑝 𝑡 = 𝔼 𝑡 [ 𝛽 𝑐 𝑡 + 1 𝑐 𝑡 𝑥 𝑡 + 1 ]
C.𝑝 𝑡 = 𝔼 𝑡 [ 𝛽 ( 𝑐 𝑡 + 1 𝛼 𝛼 ) 𝑥 𝑡 + 1 ]
D.𝑝 𝑡 = 𝔼 𝑡 [ 𝛽 ( 𝑐 𝑡 𝛼 𝛼 ) 𝑥 𝑡 + 1 ]
E.𝑝 𝑡 = 𝔼 𝑡 [ 𝛽 ( 𝑐 𝑡 + 1 𝑐 𝑡 ) 1 − 𝛼 𝑥 𝑡 + 1 ]
查看解析

查看解析

标准答案
Please login to view
思路分析
The question presents an intertemporal optimization with a two-period horizon, where the utility is u(c_t) = c_t^α (up to a normalization that is unspecified in the prompt) and the investor purchases θ shares at price p_t in period t, facing a payoff x_{t+1} = p_{t+1} + d_{t+1} in period t+1. The task asks for the equation for p_t as a function of tomorrow’s payoffs, given the specified u(c_t). The answer options show several algebraic forms for p_t that mix c_t, x_t, β, and α in various ways. Without reconstructing the entire derivation from scratch, we can nonetheless evaluate the options for internal consistency and alignment with the typical intertemporal Euler equation structure. The key idea in these problems is that the no-arbitrage/optimality condition ties the current price to the expected discounted marginal utility of tomorrow’s consumption, often leading to an expression like p_t = E_t[ β (u'(c_{t+1}) / u'(c_t)) x_{t+1} ], possibly with additional terms depending on the precise model (cash-on-hand, budget constraints, and the payoff composition). With a CRRA-like or power utility u(c) ∝ c^α (ignoring scaling constants), u'(c) ∝ c^{α-1}, so the ratio u'(c_{t+1})/u'(c_t) tends to (c_{t+1}/c_t)^{α-1}, which would appear in the price equation. Now......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Question textThis question applies to parts 1-10. It contains drop-down multiple choice and numerical questions. Consider a world in which there are only two dates: 0 and 1. At date 1 there are three possible states of nature: a good weather state (G), a fair weather state (F), and a bad weather state (B). The state at date zero is known. There is one non-storable consumption good, apples. There is one representative consumer in the economy. The endowment of apples at time 0, is 2. At time 1 the endowment of apples is state-dependent. The physical probabilities, π, and state-dependent endowments, e, of the states at time 1 are given in the table: [table] State | Probability | Endowment G | 0.4 | 4 F | 0.3 | 2 B | 0.3 | 1 [/table] The expected utility is given by [math: u(c0)+β[πG⋅u(cG)+πF⋅u(cF)+πB⋅u(cB)],] u(c_0) +\beta[\pi_G\cdot u(c_G) + \pi_F\cdot u(c_F) +\pi_B\cdot u(c_B)], where the instantaneous utility function is: [math: u(c)=ln⁡(c)]u\left ( c\right ) =\ln (c) (natural logarithm). The consumer’s time discount factor, β, is 0.95. Note: round your answers to 2 decimal places if necessary. 1) At least how many different securities is required for this market to be complete? Answer 1 Question 8[select: , 0, 1, 2, 3, none of these answers].For the rest of this question, consider Arrow-Debreu securities are available. 2) Compute the equilibrium fair weather state price: Answer 2 Question 8[input] 3) Compute the equilibrium traded quantity of the fair weather atomic (Arrow-Debreu) security: Answer 3 Question 8[input] 4) Compute the equilibrium quantity consumed in the bad weather state: Answer 4 Question 8[input] 5) In this Arrow-Debreu economy, maximization of expected utility reflects the assumption of: Answer 5 Question 8[select: , price is taken as given, the prices are maximised, market clearing, agents are selfish, none of these answers] 6) To solve for the Arrow-Debreu equilibrium, we need to do the following EXCEPT: Answer 6 Question 8[select: , set up the Lagrangian, find the first-order-condition for consumptions, find the first-order-condition for asset holdings, find the first-order-condition for asset prices, none of these answers] 7) The agent in this economy is Answer 7 Question 8[select: , risk-averse, risk neutral, risk loving, none of these answers] 8) The stochastic discount factor of the good weather state is Answer 8 Question 8[select: , equal to 0.95, less than 0.95, more than discount factor, none of these answers] 9) Assume now that the instantaneous utility is [math: u(c)=10c]u\left ( c\right ) =10 c and all other parameters remain the same. Compute the discount factor: Answer 9 Question 8[input] 10) Assume again that the instantaneous utility is [math: u(c)=10c]u\left ( c\right ) =10 c and all other parameters remain the same. Compute the risk premium of the good weather atomic (Arrow-Debreu) security: Answer 10 Question 8[input]

Consider an investor who lives 2 periods (t and t+1). She has income et in the first period and et+1 in the second period. The investor buys θ shares of an asset at price pt in the first period, and receives an uncertain payoff xt+1=pt+1+dt+1 in the second period. Her investment decision is thus described by the following maximization problem: max θ[u(ct)+β𝔼t(u(ct+1))]. Assuming that the utility function is u(ct)=ct− α 2 c 2 t what is the equation for the price of the asset in period t as a function of tomorrow’s payoffs?

Consider an investor who lives 2 periods ( 𝑡 and 𝑡 + 1 ). She has income 𝑒 𝑡 in the first period and 𝑒 𝑡 + 1 in the second period. The investor buys 𝜃 shares of an asset at price 𝑝 𝑡 in the first period, and receives an uncertain payoff 𝑥 𝑡 + 1 = 𝑝 𝑡 + 1 + 𝑑 𝑡 + 1 in the second period. Her investment decision is thus described by the following maximization problem: 𝑚 𝑎 𝑥 𝜃 [ 𝑢 ( 𝑐 𝑡 ) + 𝛽 𝔼 𝑡 ( 𝑢 ( 𝑐 𝑡 + 1 ) ) ] . Assuming that the utility function is 𝑢 ( 𝑐 𝑡 ) = 1 2 ( 𝑐 𝑡 − 𝛼 ) 2 what is the equation for the price of the asset in period 𝑡 as a function of tomorrow’s payoffs?

Consider an investor who lives 2 periods ( 𝑡 and 𝑡 + 1 ). She has income 𝑒 𝑡 in the first period and 𝑒 𝑡 + 1 in the second period. The investor buys 𝜃 shares of an asset at price 𝑝 𝑡 in the first period, and receives an uncertain payoff 𝑥 𝑡 + 1 = 𝑝 𝑡 + 1 + 𝑑 𝑡 + 1 in the second period. Her investment decision is thus described by the following maximization problem: 𝑚 𝑎 𝑥 𝜃 [ 𝑢 ( 𝑐 𝑡 ) + 𝛽 𝔼 𝑡 ( 𝑢 ( 𝑐 𝑡 + 1 ) ) ] . Assuming that the utility function is 𝑢 ( 𝑐 𝑡 ) = 𝑐 𝑡 𝛼 𝛼 what is the equation for the price of the asset in period 𝑡 as a function of tomorrow’s payoffs?

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!