题目
单项选择题
Question at position 8 If y' = 6x - 3 and y(2) = 4, then y =6x2 - 3x + 2.3x2 - 3x + 2.3x2 - 3x.3x2 - 3x - 2.6.
选项
A.6x2 - 3x + 2.
B.3x2 - 3x + 2.
C.3x2 - 3x.
D.3x2 - 3x - 2.
E.6.
查看解析
标准答案
Please login to view
思路分析
Let me restate the problem to anchor our work: We are given y' = 6x - 3 and the initial condition y(2) = 4. We need to find the function y in terms of x and then compare against the provided answer choices.
Option 1: 6x^2 - 3x + 2. This would come from integrating y' to obtain y = 3x^2 - 3x plus a constant, not 6x^2. The coefficient of x^2 here is 6 instead of 3, so this option is inconsistent with the derivative given. Moreover, evaluating at x = 2 would yi......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Which answer is the correct anti-derivative (integral) for 3 𝑥 − 3 𝑥 − 4
Question at position 8 If y' = 6x - 3 and y(2) = 4, then y =6x2 - 3x + 2.3x2 - 3x - 2.6.3x2 - 3x + 2.3x2 - 3x.
Question text Find [math: ∫2x4+3x3−3x+4]\displaystyle\int{2\,x^4+3\,x^3-3\,x+4} [math: dx]. Note: Type "[math: c]" for the integral constant. [input] Check Question 15
Question text a) Find [math: ∫3x3+5x+5]\displaystyle\int{3\,x^3+5\,x+5} [math: dx] . Note: Type [math: c] for the integral constant. [input] b) Hence, find the equation of the function that has [math: f′(x)=3x3+5x+5]\displaystyle {f}'\left( x \right)={3\,x^3+5\,x+5} and passes through the point [math: (1,4)]({1},{4}) [math: f(x)=][input] Check Question 16
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!