Questions
Questions

Pre-Calculus(Wenkai Unit 9 Homework

Single choice

Find  → u + → v if → u =(−1,5)and → v =(6,2) PRC92    

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
The task gives two vectors to add: u = (-1, 5) and v = (6, 2). To find the sum u + v, add corresponding components: for the x-components, -1 + 6 = 5; for the y-components......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Part 1A ship sails 31.9031.90 mi due east and then turns 32.2532.25degrees° north of east. After sailing another 15.1915.19 ​mi, where is it with reference to the starting​ point? Part 1The ship is [input]enter your response here miles from the starting point.​(Round to two decimal places as​ needed.)Part 2The​ ship's bearing from the starting point is [input]enter your response here degrees° north of east.​(Round to two decimal places as​ needed.)

Part 1An airplane has an airspeed of 570570 ​km/h bearing 4141degrees° north of east. The wind velocity is 8080 ​km/h in the direction 3434degrees° north of west. Find the resultant velocity representing the path of the airplane with respect to the ground. Part 1What is the actual ground speed of the​ aircraft? [input]554.7554.7 ​km/h​(Do not round until the final answer. Then round to the nearest tenth as​ needed.)Part 2What is the actual direction of the aircraft relative to due​ east?[input]enter your response here degrees° north of east​(Do not round until the final answer. Then round to the nearest tenth as​ needed.)

Part 1A ship leaves port on a bearing of 45.045.0degrees° north of east and travels 11.611.6 mi. The ship then turns due east and travels 3.33.3 mi. How far is the ship from​ port, and what is its bearing from​ port? Part 1The ship is [input]enter your response here miles from the port.​(Do not round until the final answer. Then round to the nearest tenth as​ needed.)

𝐴 𝐵 𝐶 𝐷  is a parallelogram. The vector sum   𝐴 𝐵 → + 𝐴 𝐶 → + 𝐴 𝐷 →  is equal to:

More Practical Tools for International Students

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!