Questions
Questions

BU.232.630.W6.SP25 sample_quiz_3

Single choice

Consider the likelihood of an i.i.d. sample from a Bernoulli population with parameter ๐‘ ๐ฟ ( ๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘‡ ) = โˆ ๐‘ก = 1 ๐‘‡ ๐‘ ๐‘ฅ ๐‘ก ( 1 โˆ’ ๐‘ ) 1 โˆ’ ๐‘ฅ ๐‘ก . If you estimate the parameter ๐‘ using a Maximum Likelihood estimator, you obtain the point estimate ๐‘ ฬ‚ = 1 ๐‘‡ โˆ‘ ๐‘ก = 1 ๐‘‡ ๐‘ฅ ๐‘ก , which corresponds to the sample mean. We know that for a Bernoulli random variable the expected value and the variance are ๐”ผ ( ๐‘ฅ ๐‘ก ) = ๐‘ , ๐• ( ๐‘ฅ ๐‘ก ) = ๐‘ ( 1 โˆ’ ๐‘ ) . Using this information, what is the variance of the estimator ๐• ( ๐‘ ฬ‚ ) ?

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
The question presents an i.i.d. Bernoulli(p) sample X1, X2, ..., XT and defines the MLE for p as the sample mean p_hat = (1/T) sum_t X_t. To find Var(p_hat), we can use the properties of independent Bernoulli trials. Each X_t has Var(X_t) = p(1 โˆ’ p). Since the X_t are independent, the variance of the sum is the sum......Login to view full explanation

Log in for full answers

We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!

Similar Questions

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!