你还在为考试焦头烂额?找我们就对了!

我们知道现在是考试月,你正在为了考试复习到焦头烂额。为了让更多留学生在备考与学习季更轻松,我们决定将Gold会员限时免费开放至2025年12月31日!原价£29.99每月,如今登录即享!无门槛领取。

助你高效冲刺备考!

题目
题目
单项选择题

Consider a Normal population with mean 𝜇 and variance 𝜎 2 < ∞ . We collect a sample of 𝑇 = 3 independent and identically distributed observations 𝑥 = ( 7 , 10 , 4 ) In class we have shown that the standardized log-likelihood of the sample for this case is 1 𝑇 log ( 𝐿 ( 𝑥 , 𝜇 , 𝜎 2 ) ) = − 1 2 log ( 2 𝜋 ) − 1 2 log ( 𝜎 2 ) − 1 𝑇 ∑ 𝑡 = 1 𝑇 ( 𝑥 𝑡 − 𝜇 ) 2 2 𝜎 2 . Then the Maximum Likelihood estimate of the variance 𝜎 2 is:

选项
A.𝜎 ̂ 2 = 6 .
B.There is not enough information to compute the value of 𝜎 ̂ 2 .
C.𝜎 ̂ 2 = 8 .
D.𝜎 ̂ 2 = 9 .
E.𝜎 ̂ 2 = 15 .
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the problem in our own words to ensure clarity: we have a Normal population with unknown mean μ and variance σ^2, a sample x = (7, 10, 4) of size T = 3, and the standardized log-likelihood expression is given as (1/T) log L(x, μ, σ^2) = -1/2 log(2π) - 1/2 log(σ^2) - [1/(2σ^2)] * (1/T) ∑ (x_t - μ)^2. We are asked to find the maximum likelihood estimate of σ^2 based on this sample. The key steps revolve around two standard moves in MLE for a normal model: (1) ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

为了让更多留学生在备考与学习季更轻松,我们决定将Gold 会员限时免费开放至2025年12月31日!