Questions
Questions
Multiple fill-in-the-blank

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(15x2+5)5x3+5x+5]\displaystyle\int{\left(15\,x^2+5\right)\,\sqrt{5\,x^3+5\,x+5}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(15x2+5)5x3+5x+5]\displaystyle\int{\left(15\,x^2+5\right)\,\sqrt{5\,x^3+5\,x+5}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 2

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
The task presents a three-part fill-in-the-blank process for evaluating the integral by substitution. We will examine the logical choices for each blank and explain why the chosen form is correct. First, consider part (a): selecting a substitution u to simplify the integral. The integrand is (15x^2+5) * sqrt(5x^3+......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Use the substitution formula to evaluate the integral. sec2 2x dx

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(10x+2)5x2+2x+7]\displaystyle\int{\left(10\,x+2\right)\,\sqrt{5\,x^2+2\,x+7}} [math: dx] . [math: u=] [input] Your last answer was interpreted as follows: [math: 5x2+2x+7] 5\,x^2+2\,x+7 The variables found in your answer were: [math: [x]] \left[ x \right] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(10x+2)5x2+2x+7]\displaystyle\int{\left(10\,x+2\right)\,\sqrt{5\,x^2+2\,x+7}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 19

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(10x+5)5x2+5x+5]\displaystyle\int{\left(10\,x+5\right)\,\sqrt{5\,x^2+5\,x+5}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(10x+5)5x2+5x+5]\displaystyle\int{\left(10\,x+5\right)\,\sqrt{5\,x^2+5\,x+5}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 19

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(15x2+2)5x3+2x+7]\displaystyle\int{\left(15\,x^2+2\right)\,\sqrt{5\,x^3+2\,x+7}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(15x2+2)5x3+2x+7]\displaystyle\int{\left(15\,x^2+2\right)\,\sqrt{5\,x^3+2\,x+7}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 2

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!