Questions
Questions

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 46 (9.7,9.8 and 9.9)

Single choice

Evaluate ∫ sec 3 ⁡ ( 𝜃 ) tan 5 ⁡ ( 𝜃 ) 𝑑 𝜃 .

Options
A.1 5 sec 5 ⁡ ( 𝜃 ) − 1 3 sec 3 ⁡ ( 𝜃 ) + 𝐶
B.1 7 sec 7 ⁡ ( 𝜃 ) − 2 5 sec 5 ⁡ ( 𝜃 ) + 1 3 sec 3 ⁡ ( 𝜃 ) + 𝐶
C.1 7 sec 7 ⁡ ( 𝜃 ) − 1 5 sec 5 ⁡ ( 𝜃 ) + 𝐶
D.1 3 sec 3 ⁡ ( 𝜃 ) − 1 5 sec 5 ⁡ ( 𝜃 ) + 𝐶
E.1 7 sec 7 ⁡ ( 𝜃 ) − 1 3 sec 3 ⁡ ( 𝜃 ) + 𝐶
View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
To evaluate the integral ∫ sec^3(θ) tan^5(θ) dθ, I will work by expressing everything in terms of sec(θ) and d(sec θ). Option A: (1/5) sec^5(θ) − (1/3) sec^3(θ) + C. This attempt suggests integrating to lower powers of sec, but differentiating these terms would produce derivatives involving tan(θ) sec^3(θ) or similar forms, not matching the original integrand structure. In short, this pattern do......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

The exact value of \( \int_{0}^{\pi }{(-2\cos} \frac{x}{3} )dx \) is:

Question textThe definite integral\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx can be evaluated using the trigonometric identity\sin^2(x) + \cos^2(x)=1and then use of integration by substitution. This gives\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx = \displaystyle \int_0^1 u^a - u^b\, du where a  and b  are positive integers.The final solution is of the form \dfrac{2}{A} where A  is an integer.Fill in the correct values for a,\,\,b and A.a = Answer 1 Question 29[input] b = Answer 2 Question 29[input] A = Answer 3 Question 29[input]

Problem: Evaluate the integral∫cos(4x)cos(7x)dx.  Step-by-step solution: a) Look at the Rule above Example 3.13 in the textbook Links to an external site. . To evaluate the integral  ∫cos(7x)cos(4x)dx should we use equation (3.3), (3.4) or (3.5)?  [ Select ] Equation (3.5) Equation (3.4) Equation (3.3)   b) In this example, a=7  and b=4. Which of the following options is correct? [ Select ] Option I Option III Option II Option I:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)− 1 2 cos(11x))dx      Option II:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)+ 1 2 cos(11x))dx     Option III:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(11x)+ 1 2 cos(7x))dx       c) Now integrate your answer from (b). Which is the correct final answer to the problem? Option C Option A: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)− 1 22 sin(11x)+C   Option B: ∫cos(7x)cos(4x)dx= 1 22 sin(11x)+ 1 14 sin(7x)+C      Option C: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)+ 1 22 sin(11x)+C       Option D: ∫cos(7x)cos(4x)dx=− 3 2 sin(3x)− 11 2 sin(11x)+C      

Find the average value of the function f(x)=sin6(x)cos3(x) over interval [−π,π]

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!