Questions
Questions
Multiple fill-in-the-blank

Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent and not equal to ±∞±∞\pm\infty CV | | if the series is convergent (to a non-zero number) Z | | if the series converges to 0 INF | | if the series equals to ∞∞ \infty NIF | | if the series equals to −∞−∞ -\infty [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AS | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a  geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞(𝑛+1)7(8⋅𝑛!)2(2𝑛)!∑n=1∞(n+1)7(8⋅n!)2(2n)! \sum_{n=1}^\infty (n+1)^{{7}} \,\, \frac{({8}\cdot n!)^2 }{ (2n)! } | | because ∑𝑛=1∞(1−6𝑛)2𝑛2∑n=1∞(1−6n)2n2 \sum\limits_{n=1}^{\infty} \left(1- \frac{{6} }{ n } \right)^{ {2}n^2} | | because [/table]

Question Image
View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
We begin by restating the two parts of the problem in plain terms and listing the options. First series (for the first blank): Options for the first field are DV (divergent), CV (convergent to a nonzero number), Z (converges to 0), INF (equals +∞), NIF (equals −∞), WD (not well defined). The second field provides a set of tests: DT (Divergence Test), IT (Integral Test), AS (Alternating Series Test), RO (Root Test), RA (Ratio Test), and also sub-categorizations for the comparison tests with various standard series. Second series (for the second blank): The same first-field choices apply, and the second field again lists the same tests. Now, let’s analyze each option and the given selections, one by one, explaining why each option could be correct or incorrect and what the reasoning implies. First series option analysis (the first answer field): - Option DV (the series is divergent): If this were chosen, we would be claiming the series does not converge. We would then need a justification showing that the sequence of partial sums does not approach a finite limit (for example, terms failing to go to zero, a partial sums growing without bound, or oscillations without settling). - Option CV (the series converges to a nonzero number): This asserts convergence to a finite, nonzero limit. T......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent and not equal to ±∞±∞\pm\infty CV | | if the series is convergent (to a non-zero number) Z | | if the series converges to 0 INF | | if the series equals to ∞∞ \infty NIF | | if the series equals to −∞−∞ -\infty [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AS | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a  geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞sin(𝜋9𝑛)∑n=1∞sin⁡(π9n) \sum_{n=1}^\infty \sin\left( \frac{\pi }{ {9} n } \right) | | because ∑𝑛=1∞cos(𝜋10𝑛)∑n=1∞cos⁡(π10n) \sum\limits_{n=1}^{\infty} \cos\left( \frac{\pi }{ {10} n } \right) | | because [/table]

Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent and not equal to ±∞±∞\pm\infty CV | | if the series is convergent (to a non-zero number) Z | | if the series converges to 0 INF | | if the series equals to ∞∞ \infty NIF | | if the series equals to −∞−∞ -\infty [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AS | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a  geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞3𝑛3+15𝑛12+1‾‾‾‾‾‾‾√3+𝑛∑n=1∞3n3+15n12+13+n \sum_{n=1}^\infty \frac{{3}n^{3}+1}{{5}\sqrt[{3}]{ n^{12}+1}+n} | | because ∑𝑛=1∞(𝑛ln𝑛)24𝑛∑n=1∞(nln⁡n)24n \sum\limits_{n=1}^{\infty} \frac{(n \ln n)^{2}}{{4}^n} | | because [/table]

Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent CV | | if the series is convergent (to a number ∉{0,1,tan(1/6)}∉{0,1,tan⁡(1/6)}\not\in \{0, 1, \tan(1/{6}) \}) Z | | if the series converges to 0 ON | | if the series converges to 111 IN | | if the series equals to tan(1/6)tan⁡(1/6)\tan(1/{6}) [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AST | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a  geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞(−1)𝑛tan(16𝑛)∑n=1∞(−1)ntan⁡(16n) \sum\limits_{n=1}^{\infty} (-1)^n \tan \left(\frac{1}{{6} n}\right) | | because ∑𝑛=1∞(−1)𝑛(1−7𝑛)𝑛∑n=1∞(−1)n(1−7n)n\sum\limits_{n=1}^{\infty} (-1)^n \left(1-\frac{{7}}{n}\right)^n | | because [/table]

Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent CV | | if the series is convergent (to a number ∉{0,1,5‾√}∉{0,1,5}\not\in \{0, 1, \sqrt{{5}} \}) Z | | if the series converges to 0 ON | | if the series converges to 111 IN | | if the series equals to 5‾√5\sqrt{{5}} [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AST | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a  geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=3∞(−1)𝑛5−4𝑛2‾‾‾‾‾‾‾√∑n=3∞(−1)n5−4n2 \sum\limits_{n=3}^{\infty} (-1)^n\sqrt{ {5}-\frac{ {4}}{n^2} } | | because ∑𝑛=1∞(−1)𝑛ln(1+17𝑛)∑n=1∞(−1)nln⁡(1+17n) \sum\limits_{n=1}^{\infty} (-1)^n \, \ln\left(1 + \frac{{17}}{n}\right) | | because [/table]

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!