Questions
COMP90054_2025_SM2 Supplementary or Special Exam: AI Planning for Autonomy (COMP90054_2025_SM2)- Requires Respondus LockDown Browser
Multiple choice
Select all of the following methods that use bootstrapping to estimate values
Options
A.Sarsa
B.Q-learning
C.First-visit Monte Carlo estimation
D.REINFORCE (Monte Carlo policy gradient)
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The question asks which methods use bootstrapping to estimate values, meaning they update value estimates by mixing in existing estimates rather than waiting for full returns.
Option: Sarsa
- Sarsa is an on-policy temporal-difference method that updates Q-values using the estimate from the next state-action pai......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Shown is the Q Actor-Critic (QAC) function, with line numbers. 1. Initialise 𝑠 , 𝜃 2. Sample 𝑎 ∼ 𝜋 𝜃 3. for each step do 4. Sample reward 𝑟 = 𝑅 𝑠 𝑎 ; sample transition 𝑠 ′ ∼ 𝑃 𝑠 , ⋅ 𝑎 5. Sample action 𝑎 ′ ∼ 𝜋 𝜃 ( 𝑠 ′ , 𝑎 ′ ) 6. 𝛿 = 𝑟 + 𝛾 𝑄 𝑤 ( 𝑠 ′ , 𝑎 ′ ) − 𝑄 𝑤 ( 𝑠 , 𝑎 ) 7. 𝜃 ← 𝜃 + 𝛼 ∇ 𝜃 𝑙 𝑜 𝑔 𝜋 𝜃 ( 𝑠 , 𝑎 ) 𝑄 𝑤 ( 𝑠 , 𝑎 ) 8. 𝑤 ← 𝑤 + 𝛽 𝛿 𝜙 ( 𝑠 , 𝑎 ) 9. 𝑎 ← 𝑎 ′ , 𝑠 ← 𝑠 ′ 10. end for Which of the following statements is true (can be more than one)?
The value of an action 𝑞 𝜋 ( 𝑠 , 𝑎 ) depends on the expected next reward and the expected value of the next state. We can think of this in terms of a small backup diagram, as follows: Let 𝑃 ( 𝑠 ′ | 𝑠 , 𝑎 ) be the transition probability and 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) = 𝐸 [ 𝑅 𝑡 + 1 | 𝑆 𝑡 = 𝑠 , 𝐴 𝑡 = 𝑎 , 𝑆 𝑡 + 1 = 𝑠 ′ ] the expected reward for the transion from state 𝑠 to state 𝑠 ′ via action 𝑎 . Rearrange the definition of 𝑞 𝜋 ( 𝑠 , 𝑎 ) in terms of these quantities, such that no expected-value notation appears in the equation. A. 𝑞 𝜋 ( 𝑠 , 𝑎 ) = ∑ 𝑠 ′ 𝑃 ( 𝑠 ′ ∣ 𝑠 , 𝑎 ) [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 𝑞 𝜋 ( 𝑠 ′ , 𝑎 ) ] B. 𝑞 𝜋 ( 𝑠 , 𝑎 ) = ∑ 𝑠 ′ [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 ] 𝑃 ( 𝑠 ′ ∣ 𝑠 , 𝑎 ) 𝑣 𝜋 ( 𝑠 ′ ) C. 𝑞 𝜋 ( 𝑠 , 𝑎 ) = ∑ 𝑠 ′ 𝑃 ( 𝑠 ′ | 𝑠 , 𝑎 ) [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 𝑣 𝜋 ( 𝑠 ′ ) ] D. 𝑞 𝜋 ( 𝑠 , 𝑎 ) = 𝑃 [ 𝑠 ′ ∣ 𝑠 , 𝑎 ] [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 𝑣 𝜋 ( 𝑠 ′ ) ]
Which statement best describes the difference between SARSA and Q-learning?
Which of the following best describes a key difference between Monte Carlo and Temporal-Difference (TD) learning?
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!