Questions
Questions

FINTECH 540.01.Fa25 Final Exam

Single choice

  Choose all that apply to Reinforcement Learning (RL).   I Regression tree algorithms power deep RL. II An RL agent wants to maximize its cumulative reward. III It is an ML paradigm that differs from supervised and unsupervised. IV It mathematically formalized the idea of learning by interactions.  

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
We are evaluating statements about Reinforcement Learning (RL) and selecting all that apply. Option I: 'Regression tree algorithms power deep RL.' This is typically false. Deep RL relies on neural networks (deep learning) to approximate value functions or policies, not regre......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Shown is the Q Actor-Critic (QAC) function, with line numbers. 1. Initialise 𝑠 , 𝜃 2. Sample 𝑎 ∼ 𝜋 𝜃 3. for each step do 4.      Sample reward 𝑟 = 𝑅 𝑠 𝑎 ; sample transition 𝑠 ′ ∼ 𝑃 𝑠 , ⋅ 𝑎 5.      Sample action 𝑎 ′ ∼ 𝜋 𝜃 ( 𝑠 ′ , 𝑎 ′ ) 6.      𝛿 = 𝑟 + 𝛾 𝑄 𝑤 ( 𝑠 ′ , 𝑎 ′ ) − 𝑄 𝑤 ( 𝑠 , 𝑎 ) 7.      𝜃 ← 𝜃 + 𝛼 ∇ 𝜃 𝑙 𝑜 𝑔 𝜋 𝜃 ( 𝑠 , 𝑎 ) 𝑄 𝑤 ( 𝑠 , 𝑎 ) 8.      𝑤 ← 𝑤 + 𝛽 𝛿 𝜙 ( 𝑠 , 𝑎 ) 9.      𝑎 ← 𝑎 ′ , 𝑠 ← 𝑠 ′ 10. end for Which of the following statements is true (can be more than one)?

The value of an action 𝑞 𝜋 ( 𝑠 , 𝑎 ) depends on the expected next reward and the expected value of the next state.  We can think of this in terms of a small backup diagram, as follows: Let 𝑃 ( 𝑠 ′ | 𝑠 , 𝑎 ) be the transition probability and 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) = 𝐸 [ 𝑅 𝑡 + 1 | 𝑆 𝑡 = 𝑠 , 𝐴 𝑡 = 𝑎 , 𝑆 𝑡 + 1 = 𝑠 ′ ] the expected reward for the transion from state 𝑠 to state 𝑠 ′ via action 𝑎 . Rearrange the definition of 𝑞 𝜋 ( 𝑠 , 𝑎 ) in terms of these quantities, such that no expected-value notation appears in the equation. A.   𝑞 𝜋 ( 𝑠 , 𝑎 ) = ∑ 𝑠 ′ 𝑃 ( 𝑠 ′ ∣ 𝑠 , 𝑎 ) [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 𝑞 𝜋 ( 𝑠 ′ , 𝑎 ) ] B.     𝑞 𝜋 ( 𝑠 , 𝑎 ) = ∑ 𝑠 ′ [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 ] 𝑃 ( 𝑠 ′ ∣ 𝑠 , 𝑎 ) 𝑣 𝜋 ( 𝑠 ′ ) C.     𝑞 𝜋 ( 𝑠 , 𝑎 ) = ∑ 𝑠 ′ 𝑃 ( 𝑠 ′ | 𝑠 , 𝑎 ) [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 𝑣 𝜋 ( 𝑠 ′ ) ] D.   𝑞 𝜋 ( 𝑠 , 𝑎 ) = 𝑃 [ 𝑠 ′ ∣ 𝑠 , 𝑎 ] [ 𝑟 ¯ ( 𝑠 , 𝑎 , 𝑠 ′ ) + 𝛾 𝑣 𝜋 ( 𝑠 ′ ) ]  

Which statement best describes the difference between SARSA and Q-learning?

Which of the following best describes a key difference between Monte Carlo and Temporal-Difference (TD) learning?

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!