Questions
Questions
Single choice

Recr_12 Identify the recurrence relation for the  function shown below.

Options
A.T ( n ) = { Θ ( 1 ) if  n < 2 3 T ( n 4 ) + Θ ( l o g n ) otherwise {"version":"1.1","math":"T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\ 3T\left(\frac{n}{4}\right) + \Theta(logn) & \text{otherwise} \end{cases} "}
B.T ( n ) = { Θ ( 1 ) if  n < 2 3 T ( n 4 ) + Θ ( n 2 l o g n ) otherwise {"version":"1.1","math":"T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\ 3T\left(\frac{n}{4}\right) + \Theta(n^2logn) & \text{otherwise} \end{cases} "}
C.T ( n ) = { Θ ( 1 ) if  n < 2 3 T ( n 4 ) + Θ ( n 2 ) otherwise {"version":"1.1","math":"T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\ 3T\left(\frac{n}{4}\right) + \Theta(n^2) & \text{otherwise} \end{cases} "}
D.T ( n ) = { Θ ( 1 ) if  n < 2 3 T ( n 4 ) + Θ ( n ) otherwise {"version":"1.1","math":"T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\ 3T\left(\frac{n}{4}\right) + \Theta(n) & \text{otherwise} \end{cases} "}
E.T ( n ) = { Θ ( 1 ) if  n < 2 3 T ( n 4 ) + Θ ( n l o g n ) otherwise {"version":"1.1","math":"T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\ 3T\left(\frac{n}{4}\right) + \Theta(nlogn) & \text{otherwise} \end{cases} "}
View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
Question restatement: Identify the recurrence relation for the function shown below. Answer options to evaluate: 1) T(n) = { Θ(1) if n < 2; 3 T(n/4) + Θ(log n) otherwise } 2) T(n) = { Θ(1) if n < 2; 3 T(n/4) + Θ(n^2 log n) otherwise } 3) T(n) = { Θ(1) if n < 2; 3 T(n/4) + Θ(n^2) otherwise } 4) T(n) = { Θ(1) if n < 2; 3 T(n/4) + Θ(n) otherwise } 5) T(n) = { Θ(1) if n < 2; 3 T(n/4) + Θ(n log n) otherwise } 6) T(n) = { Θ(1) if n < 2; 3 T(n/4) + Θ(n log n) otherwise } Option 1 analysis: - This option uses Θ(log n) as the non-recursive combination cost. The dominant work outside the recursive calls would be proportional to log n. Unless there is a hidden n factor in the combine step, this is unlikely to reflect a typical divide-by-4 recurrence where the combine cost scales with n or a higher order term. Therefore, this option seems to understate the work unless the problem explicitly def......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!