Still overwhelmed by exam stress? You've come to the right place!
We know exam season has you totally swamped. To support your studies, access Gold Membership for FREE until December 31, 2025! Normally £29.99/month. Just Log In to activate – no strings attached.
Let us help you ace your exams efficiently!
Questions
IFEPIA7022_001_2025_3 - Economics of Finance EOF Final - Dec 16, 2025
Single choice
Which relationship holds with the most precision?
Options
A.C = F(S,K,r,t,σ) where F = Black-Scholes model, σ = 100-day historical volatility and C = observed call price
B.Expectations Hypothesis
C.Put-Call Parity
D.Credit spread on a corporate bond = output of the Merton Model
View Explanation
Standard Answer
Please login to view
Approach Analysis
We start by listing the options to compare what relationship or concept each one describes.
Option 1: 'C = F(S,K,r,t,σ) where F = Black-Scholes model, σ = 100-day historical volatility and C = observed call price'. This suggests a pricing formula that ties call price to Black-Scholes with a specific σ. In reality, Black-Scholes uses a forward-looking, implied volatility, risk-free rate, and continuous time dynamics; ......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Consider a European call option on a non-dividend-paying stock. The call has a strike price of $99.98 and expires in two years. The spot price of the underlying stock is $91.4. The no-arbitrage price of the call is $12.84. The 2-year spot interest rate 2.25% (APR compounded annually). A European put option on the same non-dividend-paying stock, with the same strike price ($99.98) and maturity (two years) as the call, is currently overpriced by the market, resulting in an arbitrage profit of $1.94. Calculate the market price of this put. Enter your final answer rounded to two decimal places. For example, enter 1.23 if your answer is $1.234, and enter -1.23 if your answer is -$1.234.
You observe the following prices European options on a non-dividend-paying stock: Current stock price: $20 Strike price (both options): $22 Time to maturity: 1 year Option prices (each option is written on 1 share): European call price: $1.23 European put price: $1.98 You know that both options are correctly priced. Using these prices, compute the implied one-year effective risk-free interest rate. Enter your final answer rounded to two decimal places. For example, enter 1.23 if your answer is $1.234, and enter -1.23 if your answer is -$1.234.
Consider a put and a call on a stock with price S. The stock does not pay dividends. Interest rates are zero. Both options have the same expiration date. Between Monday and Tuesday, S does not change, but the call price falls by $2. What happens to the put price?
Consider a European call option on a non-dividend-paying stock. The call has a strike price of $99.98 and expires in two years. The spot price of the underlying stock is $91.4. The no-arbitrage price of the call is $12.84. The 2-year spot interest rate 2.25% (quoted as an effective annual rate). A European put option on the same non-dividend-paying stock, with the same strike price ($99.98) and maturity (two years) as the call, is currently overpriced by the market, resulting in an arbitrage profit of $1.94. What is the closest value to the current market price of this put? Round your answer to two decimal places. If your answer is "123.4567", enter it as 123.46.
More Practical Tools for International Students
Making Your Study Simpler
To make preparation and study season easier for more international students, we've decided to open up Gold Membership for a limited-time free trial until December 31, 2025!