Questions
Questions
Single choice

Question at position 1 If f(x,y,z)=x2yz2+xy2z+xyf\left(x,y,z\right)=x^2yz^2+xy^2z+xy, then fx(1, 2, 3) =36.none of the above55.50.48.

Options
A.36.
B.none of the above
C.55.
D.50.
E.48.
View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
We start by parsing the function and the request. The function given is f(x,y,z) = x^2 y z^2 + x y^2 z + x y, and we are asked to compute the partial derivative with respect to x, denoted fx, at the point (1, 2, 3). The approach is to differentiate term by term with respect to x, treating y and z as constants. Option A: 36. - If someone only differentiates the first term x^2 y z^2 with respect to x, they would get 2x y z^2. Plugging in x=1, y=2, z=3 gives 2(1)(2)(3^2) = 2*2*9 = 36. This misses the contributions from the other x-depend......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Question at position 2 If z=yx2+6yz=y\sqrt{x^2+6y}, then ∂z∂y=\frac{\partial z}{\partial y\:}= yx2+6y+x2+6y\frac{y}{\sqrt{x^2+6y}}+\sqrt{x^2+6y}3yx2+6y\frac{3y}{\sqrt{x^2+6y}}3yx2+6y+x2+6y\frac{3y}{\sqrt{x^2+6y}}+\sqrt{x^2+6y}(2x+6)yx2+6y\left(2x+6\right)y\sqrt{x^2+6y}x2+6y\sqrt{x^2+6y}

Question text 6Marks Consider the function [math: f(x,y)=x2y2+yex−1.] f(x,y) = x^2y^2 +y e^{x-1} . a) Calculate the following partial derivatives at the point [math: (1,1)]: [math: ∂f∂x=]\frac{\partial f}{\partial x}= Answer 1[input] [math: ∂f∂y=]\frac{\partial f}{\partial y}= Answer 2[input] [math: ∂2f∂x2=]\frac{\partial^2 f}{\partial x^2}= Answer 3[input] [math: ∂2f∂x∂y=]\frac{\partial^2 f}{\partial x\partial y}= Answer 4[input] [math: ∂2f∂y2=]\frac{\partial^2 f}{\partial y^2}= Answer 5[input] b) A tangent vector to the level set of [math: f] at [math: (1,1)] is [math: (1,] Answer 6[input][math: )].Notes Report question issue Question 5 Notes

Question textLet [math: f(x,y)=ey+x2]f(x,y)={e^{y+x^2}}. What is [math: ∂f∂x(0,0)+∂f∂y(0,0)]\frac{\partial f}{\partial x}(0,0) + \frac{\partial f}{\partial y}(0,0), the value of [math: ∂f∂x+∂f∂y]\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} at the point [math: (0,0)] ?[input] Check Question 67

Question textLet [math: f(x,y)=ycos⁡(xy)]f(x,y) = {y\,\cos \left( x\,y \right)}. The partial derivative [math: ∂f∂x]\frac{\partial f}{\partial {x}} is[input] Your last answer was interpreted as follows: rickli12128@outlook.comThis answer is invalid. Expected "!!", "!", "#", "#pm#", "%and", "%or", "(", "*", "**", "+", "+-", ",", "-", ".", "/", ":", "::", "::=", ":=", "<", "<=", "=", ">", ">=", "@@IS@@", "@@Is@@", "[", "^", "^^", "and", "implies", "nand", "nor", "nounand", "nounor", "or", "xnor", "xor", "~", [;$], end of input or whitespace but "@" found.Your answer should contain the variables [math: x] and [math: y].Check Question 66

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!