Questions
BU.232.630.W5.SP25 sample_quiz_1
Single choice
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) ] What is the missing entry in the matrix ˆ A 0?
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The prompt provided a single question with an answer field containing one string, but the answer_options array is empty. This means there are no multiple-choice options to analyze, so we cannot identify which choice is correct or even explain the reasoning for each option in the usual step-by-step fashion. Here is how to think about the problem given what is typically required for the missing entry in A0, along with the implications of the missing options.
- First, restating the situation: The model is y_t = θ1 x_t^{θ2 t} + ε_t (as written, though the formatting is unusual). The nonlinear least squares (NLS) estimator ̈θ_NL is asymptotically normal with an asymptotic covariance matrix proportional......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 2 1 x 2 ˆ θ 2 t log2(xt)] What is the missing entry in the matrix ˆ A 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate Ω0, ˆ Ω 0=[ 1 T ∑ T t=1 ˆ ε 2 t x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 2 1 x 2 ˆ θ 2 t log2(xt)] What is the missing entry in the matrix ˆ Ω 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log What is the missing entry in the matrix 𝐴 ̂ 0 ?
Consider the nonlinear model 𝑦 𝑡 = 𝜃 1 𝑥 𝑡 𝜃 2 𝑧 𝑡 + 𝜀 𝑡 where the sample data ( 𝑦 1 , 𝑥 1 , 𝑧 1 ) , . . . , ( 𝑦 𝑇 , 𝑥 𝑇 , 𝑧 𝑇 ) are i.i.d. and 𝐸 ( 𝜀 𝑡 | 𝑥 𝑡 , 𝑧 𝑡 ) = 0 . We know that the nonlinear least square estimator is asymptotically normal, that is ⤳ 𝑇 ( 𝜃 ̂ 𝑁 𝐿 − 𝜃 0 ) ⤳ 𝑑 𝑁 ( 0 , 𝐴 0 − 1 𝛺 0 𝐴 0 − 1 ) To compute the standard errors we need to estimate 𝐴 0 , 𝐴 ̂ 0 = [ 1 𝑇 ∑ 𝑡 = 1 𝑇 𝑥 𝑡 2 𝜃 ̂ 1 2 ( 𝑥 𝑡 − 1 ) 𝜃 ̂ 2 2 𝑧 𝑡 1 𝑇 ∑ 𝑡 = 1 𝑇 𝑥 𝑡 𝜃 ̂ 1 2 𝑥 𝑡 − 1 𝑧 𝑡 𝜃 ̂ 2 2 𝑧 𝑡 − 1 1 𝑇 ∑ 𝑡 = 1 𝑇 𝑥 𝑡 𝜃 ̂ 1 2 𝑥 𝑡 − 1 𝑧 𝑡 𝜃 ̂ 2 2 𝑧 𝑡 − 1 ] What is the missing entry in the matrix 𝐴 ̂ 0 ?
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!