Questions
BU.232.630.F3.SP25 QUIZ 1 2025
Single choice
Consider the nonlinear model ๐ฆ ๐ก = ๐ 1 ๐ฅ ๐ก ๐ 2 + ๐ ๐ก where the sample data ( ๐ฆ 1 , ๐ฅ 1 ) , . . . , ( ๐ฆ ๐ , ๐ฅ ๐ ) are i.i.d. and ๐ธ ( ๐ ๐ก | ๐ฅ ๐ก ) = 0 . We know that the nonlinear least square estimator is asymptotically normal, that is โคณ ๐ ( ๐ ฬ ๐ ๐ฟ โ ๐ 0 ) โคณ ๐ ๐ ( 0 , ๐ด 0 โ 1 ๐บ 0 ๐ด 0 โ 1 ) To compute the standard errors we need to estimate ๐บ 0 , ๐บ ฬ 0 = [ 1 ๐ โ ๐ก = 1 ๐ ๐ ฬ ๐ก 2 ๐ฅ ๐ก 2 ๐ ฬ 2 1 ๐ โ ๐ก = 1 ๐ ๐ ฬ ๐ก 2 ๐ ฬ 1 ๐ฅ ๐ก 2 ๐ ฬ 2 log ( ๐ฅ ๐ก ) 1 ๐ โ ๐ก = 1 ๐ ๐ ฬ ๐ก 2 ๐ ฬ 1 ๐ฅ ๐ก 2 ๐ ฬ 2 log ( ๐ฅ ๐ก ) ] What is the missing entry in the matrix ๐บ ฬ 0 ?
Options
A.๐ผ
(
๐
ฬ
๐ก
2
๐ฅ
๐ก
2
๐
ฬ
2
)
B.1
๐
โ
๐ก
=
1
๐
๐
ฬ
๐ก
2
๐
ฬ
1
2
๐ฅ
๐ก
2
๐
ฬ
2
log
2
(
๐ฅ
๐ก
)
C.๐ผ
(
๐
ฬ
๐ก
2
๐
ฬ
1
๐ฅ
๐ก
2
๐
ฬ
2
log
(
๐ฅ
๐ก
)
)
D.1
๐
โ
๐ก
=
1
๐
๐
ฬ
๐ก
2
๐ฅ
๐ก
2
๐
ฬ
2
E.1
๐
โ
๐ก
=
1
๐
๐
ฬ
๐ก
2
๐
ฬ
1
๐ฅ
๐ก
2
๐
ฬ
2
log
(
๐ฅ
๐ก
)
F.๐ผ
(
๐
ฬ
๐ก
2
๐
ฬ
1
2
๐ฅ
๐ก
2
๐
ฬ
2
log
2
(
๐ฅ
๐ก
)
)
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We begin by restating the problem setup and the options to ensure clarity for each choice.
Question: What is the missing entry in the matrix ฮฉฬ0 for the nonlinear least squares estimator, given that the asymptotic distribution is โคณT(ฮธฬN L โ ฮธ0) โคณd N(0, A0โ1 ฮฉ0 A0โ1)? The entries shown for ฮฉฬ0 involve terms with 1/T sums of ฮตฬt^2, x_t^2, ฮธฬ1, ฮธฬ2, and log(x_t).
Answer options:
- ๐ผ(ฮตฬt^2 x_t^2 ฮธฬ2) // Option A
- 1/T โt=1^T ฮตฬt^2 ฮธฬ1 2 x_t^2 ฮธฬ2 log(x_t) // Option B
- ๐ผ(ฮตฬt^2 ฮธฬ1 x_t^2 ฮธฬ2 log(x_t)) // Option C
- 1/T โt=1^T ฮตฬt^2 x_t^2 ฮธฬ2 // Option D
- 1/T โt=1^T ฮตฬt^2 ฮธฬ1 2 x_t^2 ฮธฬ2 log(x_t) // Option E
- ๐ผ(ฮตฬt^2 ฮธฬ1 2 x_t^2 ฮธฬ2 log^2(x_t)) // Option F
Option-by-option reasoning:
- Option A: ๐ผ(ฮตฬt^2 x_t^2 ฮธฬ2). This form mixes an expectation with the random quantity ฮธฬ2 without incorporating the log(x_t) term that appears in the estimated information matrix for the nonli......Login to view full explanationLog in for full answers
We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!
Similar Questions
Consider the nonlinear model yt=ฮธ1x ฮธ2 t +ฮตt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(ฮตt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is โ T ( ห ฮธ NLโฮธ0) d โคณ N(0,A โ1 0 ฮฉ0A โ1 0 ) To compute the standard errors we need to estimate A0, ห A 0=[ 1 T โ T t=1 ห ฮธ 1x 2 ห ฮธ 2 t log(xt) 1 T โ T t=1 ห ฮธ 1x 2 ห ฮธ 2 t log(xt) 1 T โ T t=1 ห ฮธ 2 1 x 2 ห ฮธ 2 t log2(xt)] What is the missing entry in the matrix ห A 0?
Consider the nonlinear model yt=ฮธ1x ฮธ2 t +ฮตt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(ฮตt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is โ T ( ห ฮธ NLโฮธ0) d โคณ N(0,A โ1 0 ฮฉ0A โ1 0 ) To compute the standard errors we need to estimate ฮฉ0, ห ฮฉ 0=[ 1 T โ T t=1 ห ฮต 2 t x 2 ห ฮธ 2 t 1 T โ T t=1 ห ฮต 2 t ห ฮธ 1x 2 ห ฮธ 2 t log(xt) 1 T โ T t=1 ห ฮต 2 t ห ฮธ 2 1 x 2 ห ฮธ 2 t log2(xt)] What is the missing entry in the matrix ห ฮฉ 0?
Consider the nonlinear model yt=ฮธ1x ฮธ2 t +ฮตt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(ฮตt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is โ T ( ห ฮธ NLโฮธ0) d โคณ N(0,A โ1 0 ฮฉ0A โ1 0 ) To compute the standard errors we need to estimate A0, ห A 0=[ 1 T โ T t=1 x 2 ห ฮธ 2 t 1 T โ T t=1 ห ฮธ 1x 2 ห ฮธ 2 t log(xt) 1 T โ T t=1 ห ฮธ 1x 2 ห ฮธ 2 t log(xt) ] What is the missing entry in the matrix ห A 0?
Consider the nonlinear model yt=ฮธ1x ฮธ2 t +ฮตt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(ฮตt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is โ T ( ห ฮธ NLโฮธ0) d โคณ N(0,A โ1 0 ฮฉ0A โ1 0 ) To compute the standard errors we need to estimate A0, ห A 0=[ 1 T โ T t=1 ห ฮธ 1x 2 ห ฮธ 2 t log What is the missing entry in the matrix ๐ด ฬ 0 ?
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!