Questions
BU.232.630.W6.SP25
Single choice
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate Ω0, ˆ Ω 0=[ 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 1x 2 ˆ θ 2 t log What is the missing entry in the matrix 𝛺 ̂ 0 ?
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We start by restating the problem setup and the object to be computed. The nonlinear least squares estimator is asymptotically normal with a sandwich-type asymptotic variance. The matrix Ω0 hat is the consistent estimator of the second piece in the sandwich, given by the outer product of the score (gradient of the nonlinear mean with respect to θ) weighted by squared residuals, averaged over T observations: Ω̂0 = (1/T) ∑ ε̂_t^2 ∂f_t(θ̂)/∂θ ∂f_t(θ̂)' where f_t(θ) is the mean part of y_t as a function of θ. In the typical linear-in-parameters or additive model y_t = θ1 x_t + θ2 t + ε_t, t......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 2 1 x 2 ˆ θ 2 t log2(xt)] What is the missing entry in the matrix ˆ A 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate Ω0, ˆ Ω 0=[ 1 T ∑ T t=1 ˆ ε 2 t x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 2 1 x 2 ˆ θ 2 t log2(xt)] What is the missing entry in the matrix ˆ Ω 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) ] What is the missing entry in the matrix ˆ A 0?
In a consumer society, many adults channel creativity into buying things
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!