Questions
MATH1061/1002/1021 (ND) MATH1061 Canvas Quiz 7
Single choice
If A=[54−34−1−300−5], then which of the following is A2?
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The problem statement as given is ambiguous about the dimensions and formatting of A.
- First, interpret the notation: A=[54−34−1−300−5]. The lack of clear separators makes it unclear whether A is a row vector, a column vector, or a matrix with multiple rows and columns.
- Next, A^2 (A squared) is only defined if A is a square matrix (same number of row......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Vector a = 10 12 And vector b = 2 3 Whats the value of a*b ? (* is matrix multiplication); Please enter a number with no decimals.
Question at position 13 [1−12][[4−10][23]+[1001−11]]=\begin{bmatrix} 1 & -1 & 2 \\ \end{bmatrix} \left[ \begin{bmatrix} 4 \\ -1\\ 0 \end{bmatrix} \begin{bmatrix} 2 &3 \\ \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} \right] =[2−34810]\begin{bmatrix} 2 & -3 \\ 4 & 8 \\ 1 & 0 \end{bmatrix}none of the above[29−3]\begin{bmatrix} 2 & 9 & -3 \\ \end{bmatrix}[5−7]\begin{bmatrix} 5 \\ -7 \end{bmatrix}[912]\begin{bmatrix} 9 & 12 \\ \end{bmatrix}
Question at position 12 [1−134][025−3]=\begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 5 & -3 \end{bmatrix} =[−5520−6]\begin{bmatrix} -5 & 5 \\ 20 & -6 \end{bmatrix}[68−4−17]\begin{bmatrix} 6 & 8 \\ -4 & -17 \end{bmatrix}[−2838]\begin{bmatrix} -2 & 8 \\ 3 & 8 \end{bmatrix}[4−106]\begin{bmatrix} 4 & -1 \\ 0 & 6 \end{bmatrix}[0−215−12]\begin{bmatrix} 0 & -2 \\ 15 & -12 \end{bmatrix}
Define the matrices A=\left[\begin{array}{ccc} 2&3\\ {1}&{-5}\end{array}\right] and B=\left[\begin{array}{ccc} 4&3&6\\ {1}&2.8&3\end{array}\right]. What is the entry in the first row and second column of AB?
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!