Questions
MATH1061/1002/1021 (ND) MATH1061 Canvas Quiz 7
Single choice
Let A=[−352−543−251], and B=[10−4−244−11−1]. Which of the following options is −3ABT?
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
Question restatement: The problem provides A as a 3x3 matrix A = [ [-3, 5, 2], [-5, 4, 3], [-2, 5, 1] ] and B as a 3x3 matrix B = [ [1, 0, -4], [-2, 4, -1], [1, -1, -1] ]. The task is to determine which of the given options equals −3 A B^T. The answer options field in the data is empty, but there is a single option listed in the answer field: "[33−102−1851−114−1818−84−18]". Since the option formatting is ambiguous (it looks like a flattened 3x3 matrix with no clear separators), we will first compute −3 A B^T directly, then compare with the provided option when possible.
Step-by-step calculation plan:
- Compute the transpose B^T of B.
- Multiply A by B^T to obtain M = A B^T.
- Multiply the result by −3 to obtain N = −3 M.
......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Vector a = 10 12 And vector b = 2 3 Whats the value of a*b ? (* is matrix multiplication); Please enter a number with no decimals.
Question at position 13 [1−12][[4−10][23]+[1001−11]]=\begin{bmatrix} 1 & -1 & 2 \\ \end{bmatrix} \left[ \begin{bmatrix} 4 \\ -1\\ 0 \end{bmatrix} \begin{bmatrix} 2 &3 \\ \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} \right] =[2−34810]\begin{bmatrix} 2 & -3 \\ 4 & 8 \\ 1 & 0 \end{bmatrix}none of the above[29−3]\begin{bmatrix} 2 & 9 & -3 \\ \end{bmatrix}[5−7]\begin{bmatrix} 5 \\ -7 \end{bmatrix}[912]\begin{bmatrix} 9 & 12 \\ \end{bmatrix}
Question at position 12 [1−134][025−3]=\begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 5 & -3 \end{bmatrix} =[−5520−6]\begin{bmatrix} -5 & 5 \\ 20 & -6 \end{bmatrix}[68−4−17]\begin{bmatrix} 6 & 8 \\ -4 & -17 \end{bmatrix}[−2838]\begin{bmatrix} -2 & 8 \\ 3 & 8 \end{bmatrix}[4−106]\begin{bmatrix} 4 & -1 \\ 0 & 6 \end{bmatrix}[0−215−12]\begin{bmatrix} 0 & -2 \\ 15 & -12 \end{bmatrix}
Define the matrices A=\left[\begin{array}{ccc} 2&3\\ {1}&{-5}\end{array}\right] and B=\left[\begin{array}{ccc} 4&3&6\\ {1}&2.8&3\end{array}\right]. What is the entry in the first row and second column of AB?
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!