Questions
MTH1030 -1035 - S1 2025 MTH1030/35 Week 9 lesson quiz: Representing functions by infinite series
Single choice
Which among the following statements is the strongest that is true?A If a function is defined for all x and has a Maclaurin series, then this Maclaurin series converges for all x.B If a function is defined for all x and has a Maclaurin series, then this Maclaurin series is equal to the function for all x.C If a function is defined for all x and has a Maclaurin series, then this Maclaurin series is equal to the function for infinitely many values of \(x\)D If a function is defined for all x and has a Maclaurin series, then this Maclaurin series is equal to the function at \(x=0\).
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
Let’s parse the question first: we’re comparing statements about a function f defined for all real x that has a Maclaurin series. The Maclaurin series is the power series obtained by expanding f around x = 0, i.e., f(x) = sum_{n=0}^∞ f^{(n)}(0)/n! * x^n in its radius of convergence. Now evaluate each option in turn.
Option A: 'If a function is defined for all x and has a Maclaurin series, then this Maclaurin series converges for all x.' This is not necessarily true. A Maclaurin series may have a finite radius of convergen......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos(3x)+6ln(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsPlease answer all parts of the question.Notes Report question issue Question 7 Notes
Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos(3x)+6ln(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsNotes Report question issue Question 7 Notes
Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln(1+t)sin(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln(1+t)sin(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldotsPlease answer all parts of the question.
Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln(1+t)sin(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln(1+t)sin(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldots
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!