Still overwhelmed by exam stress? You've come to the right place!

We know exam season has you totally swamped. To support your studies, access Gold Membership for FREE until December 31, 2025! Normally £29.99/month. Just Log In to activate – no strings attached.

Let us help you ace your exams efficiently!

Questions
Questions

BU.520.601.T2.FA25 Final Exam

Single choice

A zero in the allowable increase or decrease columns of the variable cells table in the sensitivity report indicates that

Options
A.the objective function needs new coefficients.
B.an alternate optimal solution exists.
C.the right hand sides should be increased.
D.an error in formulation has been made.
View Explanation

View Explanation

Standard Answer
Please login to view
Approach Analysis
We begin by restating the prompt to ensure we’re evaluating the same situation: a zero in the allowable increase or decrease columns of the variable cells table in the sensitivity report. Option 1: 'the objective function needs new coefficients.' This is not what a zero in the allowable ranges signals. The all......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Solving a linear program can never result in integer values for the decision variables. 

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 If we increase the objective function coefficient of x by 2, i.e., 4 becomes 6, the new optimal solution includes point C.

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 When the constraint coefficient of x in the blue constraint changes from 1 to 3, the optimal solution changes. 

Consider the following Excel sensitivity report and it's accompanying problem:   Minimize cost = X + 2Y    subject to  X + 3Y ≥ 90   8X + 2Y ≥ 160    3X + 2Y ≥120    Y ≤ 70    X, Y≥ 0   Variable Cells                     Final Reduced Objective Allowable Allowable   Cell Name Value Cost Coefficient Increase Decrease   $B$3 X 25.71 0 1 2 0.333333333   $C$3 Y 21.43 0 2 1 1.333333333                 Constraints                     Final Shadow Constraint Allowable Allowable   Cell Name Value Price R.H. Side Increase Decrease   $J$6           LHS 90 0.57 90 62 50   $J$7           LHS 248.57 0 160 88.57142857 1E+30   $J$8           LHS 120 0.14 120 150 28.18181818   $J$9           LHS 21.43 0 70 1E+30 48.57142857   Suppose we add another variable, x3, with an objective function coefficient of 9, and constraint coefficients of 8, 3, and 5 for the first three constraints, respectively. What is the marginal impact of this new variable on the objective function? (In your calculations round all the numbers to 2 decimals.)       

More Practical Tools for International Students

To make preparation and study season easier for more international students, we've decided to open up Gold Membership for a limited-time free trial until December 31, 2025!