Questions
Questions

QANT_620-VA1-2025SP-VR Midterm Exam

Single choice

A furniture company is producing two types of furniture. Product A requires 8 board feet of wood and 2 lbs of wicker. Product B requires 6 board feet of wood and 6 lbs of wicker. There are 2000 board feet of wood available for product and 1000 lbs of wicker. Product A earns a profit margin of $30 a unit and Product B earns a profit margin of $40 a unit. What should the objective function be?

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
We begin by restating the problem in our own words to ensure clarity: a furniture company produces two products, A and B. Product A uses 8 board feet of wood and 2 lbs of wicker per unit, while Product B uses 6 board feet of wood and 6 lbs of wicker per unit. Available resources are 2000 board feet of wood and 1000 lbs of wicker. The profit per unit is $30 for A and $40 for B. The task is to determine the objective function for the linear programming model. First, identify the decision variabl......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Solving a linear program can never result in integer values for the decision variables. 

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 If we increase the objective function coefficient of x by 2, i.e., 4 becomes 6, the new optimal solution includes point C.

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 When the constraint coefficient of x in the blue constraint changes from 1 to 3, the optimal solution changes. 

Consider the following Excel sensitivity report and it's accompanying problem:   Minimize cost = X + 2Y    subject to  X + 3Y ≥ 90   8X + 2Y ≥ 160    3X + 2Y ≥120    Y ≤ 70    X, Y≥ 0   Variable Cells                     Final Reduced Objective Allowable Allowable   Cell Name Value Cost Coefficient Increase Decrease   $B$3 X 25.71 0 1 2 0.333333333   $C$3 Y 21.43 0 2 1 1.333333333                 Constraints                     Final Shadow Constraint Allowable Allowable   Cell Name Value Price R.H. Side Increase Decrease   $J$6           LHS 90 0.57 90 62 50   $J$7           LHS 248.57 0 160 88.57142857 1E+30   $J$8           LHS 120 0.14 120 150 28.18181818   $J$9           LHS 21.43 0 70 1E+30 48.57142857   Suppose we add another variable, x3, with an objective function coefficient of 9, and constraint coefficients of 8, 3, and 5 for the first three constraints, respectively. What is the marginal impact of this new variable on the objective function? (In your calculations round all the numbers to 2 decimals.)       

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!