题目
题目

MATH 2A LEC A: CALCULU... Midterm

多项填空题

The graphs of ff and gg are given below. Use them to evaluate each limit, if it exists. (If an answer does not exist, enter DNE.) (a) limx→2[f(x)+g(x)]=\lim_{x\rightarrow 2}[f(x)+g(x)]=[Fill in the blank], (b) limx→1[f(x)+g(x)]=\lim_{x \to 1} [f(x) + g(x)] =[Fill in the blank], (c) limx→0[f(x)g(x)]=\lim_{x \to 0} [f(x)g(x)] =[Fill in the blank], (d) limx→−1g(x)f(x)=\lim_{x \to -1} \frac{g(x)}{f(x)} =[Fill in the blank], (e) limx→2[x3f(x)]=\lim_{x \to 2} \left[x^3 f(x)\right] =[Fill in the blank], (f) limx→13+f(x)=\lim_{x \to 1} \sqrt{3 + f(x)} =[Fill in the blank],

查看解析

查看解析

标准答案
Please login to view
思路分析
We are asked to evaluate six limits using the graphs of f and g. Each item (a) through (f) corresponds to a manipulation of f(x) and g(x) as x approaches a certain value. In the absence of the actual graphs in this prompt, we rely on the provided correct values to guide the explanation and illustrate how these results typically arise from graph behavior. (a) lim_{x→2} [f(x) + g(x)] This limit is the sum of the individual limits, provided both limits exist. If f(x) → Lf and g(x) → Lg as x → 2, then f(x) + g(x) → Lf + Lg. The reported value is 3, so the combination of the left/right or approaching values of f and g at x = 2 yields a total of 3. Potential missteps could......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!