Questions
Questions

MATH_1225_17255_202501 2.2 The Limit of the Function

Multiple dropdown selections

We write lim x→af(x)=L and say "the limit of f(x), as x approaches a, is equal to L" if we can make the values of f(x) arbitrarily close to L by taking x   to be sufficiently close to a .

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
In this statement about limits, four components are referenced, each playing a distinct role in the definition. Option 1: f(x) — This part represents the function’s values. The phrase 'the limit of f(x)' concerns what t......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Which of the following statements must be true, and which are false? Note: each part is independent from the others. a) If 𝑓 ( 𝑥 ) is a polynomial, then lim 𝑥 → 5 𝑓 ( 𝑥 )  can be evaluated by computing 𝑓 ( 5 ) . [ Select ] False True b) If 𝑅 ( 𝑥 )   is a rational function, then lim 𝑥 → 7 𝑅 ( 𝑥 )     can be evaluated by computing 𝑅 ( 7 )  . [ Select ] False True c) If 𝑝 ( 𝑥 )  is a polynomial, then lim 𝑥 → 5 + 𝑝 ( 𝑥 )    can be evaluated by computing 𝑝 ( 5 )  . [ Select ] True False d) If 𝑓 ( 2 ) = 4  then lim 𝑥 → 2 [ 𝑓 ( 𝑥 ) ] 2 = 16   [ Select ] False True e) If   lim 𝑥 → 4 ( 5 𝑓 ( 𝑥 ) ) = 15   , then lim 𝑥 → 4 𝑓 ( 𝑥 ) = 3   . [ Select ] True False f) If   lim 𝑥 → 4 ( 𝑥 𝑓 ( 𝑥 ) ) = 8   , then lim 𝑥 → 4 𝑓 ( 𝑥 ) = 2    . [ Select ] False True

  the graph of f(x)f\left(x\right) given above. Use it to find the following one-sided and two-sided limits. (If a limit does not exist, write DNE.) limx→1−f(x)=\lim\limits_{x\:\rightarrow1^-}\:f\left(x\right)= [Fill in the blank], limx→1+f(x)=\lim\limits_{x\rightarrow1^+}f\left(x\right)= [Fill in the blank], limx→1f(x)=\lim\limits_{x\rightarrow1}f\left(x\right)\:= [Fill in the blank], limx→2f(x)=\lim\limits_{x\rightarrow2}f\left(x\right)= [Fill in the blank], limx→3−f(x)=\lim\limits_{x\rightarrow3^-}f\left(x\right)= [Fill in the blank], limx→3f(x)=\lim\limits_{x\rightarrow3}f\left(x\right)=[Fill in the blank], limx→4f(x)=\lim\limits_{x\rightarrow4}f\left(x\right)=[Fill in the blank],

                  Consider the two graphs above. What are the following limits? (If a limit does not exist, write DNE.) limx→1f(x)=\lim\limits_{x\rightarrow1}f\left(x\right)= [Fill in the blank], limx→1g(x)=\lim\limits_{x\rightarrow1}g\left(x\right)= [Fill in the blank], Note that the two functions f(x)f\left(x\right) and g(x)g\left(x\right) are identical except for at x=1x=1    . Is the following statement TRUE or FALSE? For any function  h(x)h\left(x\right) , the limit limx→ah(x)\lim\limits_{x\rightarrow a}h\left(x\right) does not depend on the value of h(x)h\left(x\right) at  x=ax=a  , or even whether h(a)h\left(a\right) is defined or not.  [Fill in the blank], (Write "TRUE" or "FALSE".)  

Question text Consider the function [math: f(x)={3x+5,x<33x2+4x−2,x≥3] f(x)= \begin{cases} \displaystyle & {3\,x+5}, & x < {3} \\ & {3\,x^2+4\,x-2}, & x \geq {3}\end{cases} . a) [math: limx→3−f(x)=]\displaystyle \lim_{{x \to {3}^-}} f(x) = [input] b) [math: limx→3+f(x)=]\displaystyle\lim_{{x \to {3}^+}} f(x) = [input] c) [math: limx→3f(x)=]\displaystyle\lim_{{x \to {3}}} f(x) = [select: (Clear my choice), does not exist since left limit is not equal to right limit., exists and equals 37] Check Question 3

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!