Questions
Questions
Multiple fill-in-the-blank

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>If&nbsp;</mtext><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>x</mi><mn>5</mn></msup><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo>,</mo><mtext>&nbsp;find&nbsp;</mtext><msup><mi>f</mi><mrow class="MJX-TeXAtom-ORD"><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mtext>&nbsp;and&nbsp;</mtext><mi>f</mi><mrow><mo>(</mo><msup><mi>f</mi><mrow class="MJX-TeXAtom-ORD"><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mn>5</mn><mo stretchy="false">)</mo><mo>)</mo></mrow><mo>.</mo></math>\text{If } f(x) = x^5 + x^3 + x, \text{ find } f^{-1}(3) \text{ and } f\left(f^{-1}(5)\right). (a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow class="MJX-TeXAtom-ORD"><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>=</mo></math>f^{-1}(3)=[Fill in the blank], (b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mo>(</mo><msup><mi>f</mi><mrow class="MJX-TeXAtom-ORD"><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mn>5</mn><mo stretchy="false">)</mo><mo>)</mo></mrow><mo>=</mo></math>f\left(f^{-1}(5)\right)=[Fill in the blank],

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
Let's walk through the problem step by step and keep the logic explicit for each part. - First, recall the function given: f(x) = x^5 + x^3 + x. This is a polynomial with odd degree and positive leading coefficient, and its derivative f'(x) = 5x^4 + 3x^2 + 1 is always positive for all real x. Therefore, f is strictly increasing on the entire real line and is one-to-one, so an inverse function f......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Find the domain and range of the inverse of the given function. f(x) =

Problem: Find the inverse for the function 𝑓 ( 𝑥 ) = 3 𝑥 + 1 2 𝑥 − 4 .  Suppose a student writes the following solution. Is it correct? Line 1:   Write 𝑦 = 3 𝑥 + 1 2 𝑥 − 4 and solve for 𝑥 .  Line 2:    𝑦 ( 2 𝑥 − 4 ) = 3 𝑥 + 1   Line 3:   2 𝑥 𝑦 − 4 𝑦 = 3 𝑥 + 1   Line 4:   2 𝑥 𝑦 − 3 𝑥 = 1 + 4 𝑦   Line 5:   𝑥 ( 2 𝑦 − 3 ) = 1 + 4 𝑦   Line 6:   𝑥 = 1 + 4 𝑦 2 𝑦 − 3   Line 7:   Now interchange variables:  𝑦 = 1 + 4 𝑥 2 𝑥 − 3     Line 8:   Therefore   𝑓 − 1 ( 𝑥 ) = 1 + 4 𝑥 2 𝑥 − 3      Line 9:   Simplify:   𝑓 − 1 ( 𝑥 ) = 𝑥 + 4 2 − 3 𝑥       a) Is the above solution correct? If not, in which line is the first error? (If there is more than one error, select the line where the FIRST error occurs.) [ Select ] First error is in Line 2. First error is in Line 9. The solution is correct. First error is in Line 1. First error is in Line 7. First error is in Line 4. First error is in Line 6. First error is in Line 3. First error is in Line 5. First error is in Line 8. b) What is the correct final answer to the problem? [ Select ] y = (x+1) / (2-3x) y = (1+4x) / (1-6x) y = (x+4) / (2-3x) None of the other options y = (1+4x) / (2x-3) c) What is the domain of 𝑓 − 1 ( 𝑥 ) ? [ Select ] All real numbers except 3/2 All real numbers except -4 All real numbers except -1/4 All real numbers except 1/6 All real numbers except 2/3

Question text Find the inverse function of the exponential function [math: f(x)=2e5x−2+1]\displaystyle f(x)={2\,e^{5\,x-2}+1}. Note: Type [math: ln(a)] to enter [math: loge(a)]log_{e}(a). [math: f−1(x)=]f^{-1}(x)=[input] Check Question 7

Question text Find the inverse function of the exponential function [math: f(x)=6e2x−4+1]\displaystyle f(x)={6\,e^{2\,x-4}+1}. Note: Type [math: ln(a)] to enter [math: loge(a)]log_{e}(a). [math: f−1(x)=]f^{-1}(x)=[input] Check Question 7

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!