Questions
Multiple fill-in-the-blank
Question text Find [math: ∫6x5+2x2−4x+5]\displaystyle\int{6\,x^5+2\,x^2-4\,x+5} [math: dx]. Note: Type "[math: c]" for the integral constant. [input] Check Question 15
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The task is to compute the indefinite integral of the polynomial 6x^5 + 2x^2 - 4x + 5 with respect to x.
First, integrate each term separately: for ∫6x^5 dx, the power rule give......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Integrate ∫ ( 2 𝑥 − 1 ) 4 𝑑 𝑥
Question at position 11 find ∫23−xdx\int2^{3-x}dx−e3−xln(2)+C- \frac{e^{3 - x}}{\ln(2)} + C 23−xln(2)+C \frac{2^{3 - x}}{\ln(2)} + C 23−xln(2)+C\frac{2^{3 - x}}{\ln(2)} + C−23−xln(2)+C- \frac{2^{3 - x}}{\ln(2)} + C
Question at position 3 ∫x2+4x−3x−1dx=\int\frac{x^2+4x-3}{x-1}dx=x22+5x+2ln|x−1|+C\frac{x^2}{2}+5x+2\ln\left|x-1\right|+C7x22−2x+C\frac{7x^2}{2}-2x+Cx22+6x+3ln|x−1|+C\frac{x^2}{2}+6x+3\ln\left|x-1\right|+C12ln|x−1|+C\frac{1}{2}\ln\left|x-1\right|+C13ln|x−1|+C\frac{1}{3}\ln\left|x-1\right|+C
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+Cx44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+C
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!