Questions
Single choice
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+Cx44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+C
Options
A.𝑥
4
4
−
1
3
𝑥
3
+
2
𝑥
+
𝐶
B.𝑥
4
4
+
1
3
𝑥
3
+
2
𝑥
+
𝐶
C.𝑥
4
4
−
3
𝑥
3
+
2
𝑥
+
𝐶
D.3
𝑥
2
+
4
𝑥
−
5
+
𝐶
E.3
𝑥
2
−
1
4
𝑥
3
+
𝐶
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The problem asks us to compute the indefinite integral of the function x^3 − 1/x^4 + 2 with respect to x, and then choose the matching option.
Option 1 appears as: x^4/4 − 1/(3 x^3) + 2x + C. Here, integrating x^3 gives x^4/4, which is correct, but the second term should be +1/(3 x^3) (not −1/(3 x^3)); also the sign for the 1/x^4 term is incorrect since ∫(−x^−4)dx = +1/(3 x^3). Therefore this option misrepresents both the second term and the sign of that term, so it is not correct.
......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Integrate ∫ ( 2 𝑥 − 1 ) 4 𝑑 𝑥
Question at position 11 find ∫23−xdx\int2^{3-x}dx−e3−xln(2)+C- \frac{e^{3 - x}}{\ln(2)} + C 23−xln(2)+C \frac{2^{3 - x}}{\ln(2)} + C 23−xln(2)+C\frac{2^{3 - x}}{\ln(2)} + C−23−xln(2)+C- \frac{2^{3 - x}}{\ln(2)} + C
Question at position 3 ∫x2+4x−3x−1dx=\int\frac{x^2+4x-3}{x-1}dx=x22+5x+2ln|x−1|+C\frac{x^2}{2}+5x+2\ln\left|x-1\right|+C7x22−2x+C\frac{7x^2}{2}-2x+Cx22+6x+3ln|x−1|+C\frac{x^2}{2}+6x+3\ln\left|x-1\right|+C12ln|x−1|+C\frac{1}{2}\ln\left|x-1\right|+C13ln|x−1|+C\frac{1}{3}\ln\left|x-1\right|+C
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+Cx44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+C
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!