Questions
Single choice
Question at position 3 ∫x2+4x−3x−1dx=\int\frac{x^2+4x-3}{x-1}dx=x22+5x+2ln|x−1|+C\frac{x^2}{2}+5x+2\ln\left|x-1\right|+C7x22−2x+C\frac{7x^2}{2}-2x+Cx22+6x+3ln|x−1|+C\frac{x^2}{2}+6x+3\ln\left|x-1\right|+C12ln|x−1|+C\frac{1}{2}\ln\left|x-1\right|+C13ln|x−1|+C\frac{1}{3}\ln\left|x-1\right|+C
Options
A.𝑥
2
2
+
5
𝑥
+
2
ln
|
𝑥
−
1
|
+
𝐶
B.7
𝑥
2
2
−
2
𝑥
+
𝐶
C.𝑥
2
2
+
6
𝑥
+
3
ln
|
𝑥
−
1
|
+
𝐶
D.1
2
ln
|
𝑥
−
1
|
+
𝐶
E.1
3
ln
|
𝑥
−
1
|
+
𝐶
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We start by examining the given indefinite integral: ∫ (x^2 + 4x − 3) / (x − 1) dx. A practical approach is to perform polynomial long division to simplify the integrand before integrating.
Option A (the first choice): x^2/2 + 5x + 2 ln|x−1| + C
- This result corresponds to integrating a quotient of (x + 5) with a remainder term 2/(x−1). If we rewrite the integrand after division as (x + 5) + 2/(x−1), then integrating gives ∫(x) dx = x^2/2, ∫(5) dx = 5x, and ∫(2/(x−1)) dx = 2 ln|x−1|. Summing yields x^2/2 + 5x + 2 ln|x−1| + C, which matches this ......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Integrate ∫ ( 2 𝑥 − 1 ) 4 𝑑 𝑥
Question at position 11 find ∫23−xdx\int2^{3-x}dx−e3−xln(2)+C- \frac{e^{3 - x}}{\ln(2)} + C 23−xln(2)+C \frac{2^{3 - x}}{\ln(2)} + C 23−xln(2)+C\frac{2^{3 - x}}{\ln(2)} + C−23−xln(2)+C- \frac{2^{3 - x}}{\ln(2)} + C
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+Cx44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+C
Question at position 4 ∫2x−13dx=\int\frac{2x-1}{3}dx=(2x−1)26+C\frac{\left(2x-1\right)^2}{6}+C13(x2−x)+C\frac{1}{3}\left(x^2-x\right)+C12+C\frac{1}{2}+Cx2−x3x+C\frac{x^2-x}{3x}+C23+C\frac{2}{3}+C
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!