Questions
Single choice
Question at position 4 ∫2x−13dx=\int\frac{2x-1}{3}dx=23+C\frac{2}{3}+C12+C\frac{1}{2}+C13(x2−x)+C\frac{1}{3}\left(x^2-x\right)+C(2x−1)26+C\frac{\left(2x-1\right)^2}{6}+Cx2−x3x+C\frac{x^2-x}{3x}+C
Options
A.2
3
+
𝐶
B.1
2
+
𝐶
C.1
3
(
𝑥
2
−
𝑥
)
+
𝐶
D.(
2
𝑥
−
1
)
2
6
+
𝐶
E.𝑥
2
−
𝑥
3
𝑥
+
𝐶
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
Question restatement: Evaluate the integral for the given expression, effectively finding an antiderivative of (2x − 1)/3 with respect to x. The provided answer options represent different candidate antiderivatives.
Option 1: "2/3 + C". This is a constant function (up to the constant C). Its derivative is 0, which does not match the integrand (2x − 1)/3, so this cannot be the correct antiderivative.
Option 2: "1/2 + C". Similar to Option 1, this is a constant funct......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Integrate ∫ ( 2 𝑥 − 1 ) 4 𝑑 𝑥
Question at position 11 find ∫23−xdx\int2^{3-x}dx−e3−xln(2)+C- \frac{e^{3 - x}}{\ln(2)} + C 23−xln(2)+C \frac{2^{3 - x}}{\ln(2)} + C 23−xln(2)+C\frac{2^{3 - x}}{\ln(2)} + C−23−xln(2)+C- \frac{2^{3 - x}}{\ln(2)} + C
Question at position 3 ∫x2+4x−3x−1dx=\int\frac{x^2+4x-3}{x-1}dx=x22+5x+2ln|x−1|+C\frac{x^2}{2}+5x+2\ln\left|x-1\right|+C7x22−2x+C\frac{7x^2}{2}-2x+Cx22+6x+3ln|x−1|+C\frac{x^2}{2}+6x+3\ln\left|x-1\right|+C12ln|x−1|+C\frac{1}{2}\ln\left|x-1\right|+C13ln|x−1|+C\frac{1}{3}\ln\left|x-1\right|+C
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+Cx44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+C
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!