Questions
Single choice
Integrate ∫ ( 2 𝑥 − 1 ) 4 𝑑 𝑥
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We start by restating what’s given and what’s missing in the options.
- Question: Integrate ∫ (2x − 1)^4 dx.
- Answer options: not provided in the data (the field labeled answer_options is empty).
- The provided answer string appears to be intended as the result: (2x − 1)^5 / 10 + C, though it’s written as a concatenated and somewhat......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Question at position 11 find ∫23−xdx\int2^{3-x}dx−e3−xln(2)+C- \frac{e^{3 - x}}{\ln(2)} + C 23−xln(2)+C \frac{2^{3 - x}}{\ln(2)} + C 23−xln(2)+C\frac{2^{3 - x}}{\ln(2)} + C−23−xln(2)+C- \frac{2^{3 - x}}{\ln(2)} + C
Question at position 3 ∫x2+4x−3x−1dx=\int\frac{x^2+4x-3}{x-1}dx=x22+5x+2ln|x−1|+C\frac{x^2}{2}+5x+2\ln\left|x-1\right|+C7x22−2x+C\frac{7x^2}{2}-2x+Cx22+6x+3ln|x−1|+C\frac{x^2}{2}+6x+3\ln\left|x-1\right|+C12ln|x−1|+C\frac{1}{2}\ln\left|x-1\right|+C13ln|x−1|+C\frac{1}{3}\ln\left|x-1\right|+C
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+Cx44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+C
Question at position 4 ∫2x−13dx=\int\frac{2x-1}{3}dx=(2x−1)26+C\frac{\left(2x-1\right)^2}{6}+C13(x2−x)+C\frac{1}{3}\left(x^2-x\right)+C12+C\frac{1}{2}+Cx2−x3x+C\frac{x^2-x}{3x}+C23+C\frac{2}{3}+C
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!