Still overwhelmed by exam stress? You've come to the right place!

We know exam season has you totally swamped. To support your studies, access Gold Membership for FREE until December 31, 2025! Normally £29.99/month. Just Log In to activate – no strings attached.

Let us help you ace your exams efficiently!

Questions
Questions

FDSCTE 1120 SP2025 (33574) Exam 2

Single choice

Which of the following hop varieties has citrus aroma characteristics?

View Explanation

View Explanation

Standard Answer
Please login to view
Approach Analysis
Question restatement: Which of the following hop varieties has citrus aroma characteristics? Note on provided data: The answer options array is empty, so there are no specific alternatives to evaluate one by one. Without the list of choices, I cannot compare each option's aroma profile directly. However, the given answer field indicates Amarillo as the correct choice, so I will explain why Amarillo is associated with citrus a......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

This question continues previous question 32. Based on the cost information provided in Question 32 and a Weighted Average Contribution Margin (WACM) of 160 per unit calculate the break-even point in units for Model A. Note: Round to full numbers, provide your answer without the unit sign, i.e., X,XXX, and show your workings. Answer: [Fill in the blank] , Working space: [Fill in the blank]

Roses are [Fill in the blank] , violets are [Fill in the blank]

Question text Each student below analyzes a proposed trigonometric expression and explains their reasoning.Match each student’s reasoning to the explanation that best fits their thinking. Student 1:I was asked to evaluate .I tested it using and , and the two sides were not equal. I tried other values too and got the same result. I believe this expression is never true.Answer 1 Question 23[select: , The student was correct; the expression is never true. Multiple test cases using different values always yield unequal results., The student analysis was incorrect; the expression is always true because it is a valid trigonometric identity., The student analysis was incorrect; the expression is sometimes true. It holds for some distinct values of x and y, but is unequal for other values.] Student 2:I was asked to verify .I recognized the numerator as based on the Pythagorean identity, so the left side of the expression becomes .I now realize this means the expression is never true.Answer 2 Question 23[select: , The student's analysis was incorrect; the expression is always true because the numerator is equivalent to sin^2(x), not -sin^2(x)., The student's analysis was incorrect; the expression is sometimes true because it holds for specific values of x, but fails for most other values., The student was correct; the expression is never true since the left side simplifies to -1, which is never equal to the right side.] Student 3:I was asked to evaluate .I tested it using , and both sides came out equal. I concluded the expression is always true.Answer 3 Question 23[select: , The student was correct; the expression is always true for all values of x ., The student analysis was incorrect; the expression is sometimes true; when different values for x are tested, the two sides are not equal., The student analysis was incorrect; the expression is never true for any value of x.]

Question text The students below each construct a sinusoidal function based on a shared scenario involving water level fluctuations.Match each student’s reasoning to the explanation that best fits their thinking. Scenario:The depth of water , in metres, at a canal dock fluctuates due to the system of canal locks lowering and raising the water for container ships. The water varies sinusoidally from a minimum of 1.5 m to a maximum of 4.5 m. The depth reaches its minimum at 5:00 AM, and one full cycle of the water level is completed every 4 hours. The horizontal axis represents time , in hours, where corresponds to midnight. Student 1:I was asked to find the water depth at 3 AM.The equation I created was Since the minimum occurs at 5:00 AM, I shifted the function by 5.Using this function, I found the depth at 3 AM was 1.5 m.Answer 1 Question 22[select: , All parameters are correct. Therefore, the initial evaluation is correct, and the correct depth at 3 AM is 1.5 m. , All parameters are correct except the phase shift: there should be a phase shift of -5. Therefore, the initial evaluation is incorrect; using the new equation, the correct depth at 3 AM is 4.5 m. , All parameters are correct except the k-value: the k-value should be pi/4. The initial evaluation is still correct; the depth at 3 AM is 1.5 m.] Student 2:I was asked to find the water depth at 6 AM.The equation I created was I chose sine because the water starts rising after its lowest point.Using my equation, I found the depth at 6 AM was 3 m.Answer 2 Question 22[select: , All parameters are correct except for the amplitude, which should be negative. The initial evaluation is still correct; the depth at 6 AM is 3 m., All parameters are except the phase shift: there should be a phase shift of -5. Therefore, the initial evaluation is incorrect; using the new equation, the correct depth at 6 AM is 4.1 m., All parameters are correct except the k-value; the k-value should be pi/2. The initial evaluation is still correct; the depth at 6 AM is 3 m. ] Student 3:I was asked to find the water depth at 1 PM.The equation I created was Since the minimum occurs at 5:00 AM, I used a cosine function with a shift to match the point.I found the depth at 1 PM to be 4.5 m.Answer 3 Question 22[select: , All parameters are correct except the k-value; the correct k-value is pi/4. The initial evaluation is still correct; the depth at 1 PM is 4.5 m., All parameters are correct except for the phase shift; there should be a phase shift of -3. Therefore, the initial evaluation is incorrect; using the new equation, the correct depth at 1 PM is 1.5 m.. , All parameters are correct and the student’s evaluation of the depth was correct; the depth at 1 PM is 4.5 m.]

More Practical Tools for International Students

To make preparation and study season easier for more international students, we've decided to open up Gold Membership for a limited-time free trial until December 31, 2025!