Questions
Single choice
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐ ๐ = 0.04 and ๐ ๐ โ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.5 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
Options
A.There is not enough data to compute
โ
ฬ
๐
+
1
.
B.โ
ฬ
๐
+
1
=
0.7071
C.โ
ฬ
๐
+
1
=
0.4896
D.โ
ฬ
๐
+
1
=
0.2
E.โ
ฬ
๐
+
1
=
0.5
F.โ
ฬ
๐
+
1
=
0.0016
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We are given a GARCH(1,1) setup with the following (slightly garbled) specification and parameter estimates:
- r_t = ฮฑ + ฮฒ r_{t-1} โ 1 + ฮต_t
- ฮต_t is related to shocks
- h_t = ฮผ + ฮด h_{tโ1} + ฯ ฮต_{tโ1}
- E_t(โ1)(u_t) = 0 and E_t(โ1)(u_t^2) = 1 (these appear to be normalization conditions for the error terms)
Estimated parameters: ฮฑ = 0.5911, ฮฒ = 0.9222, ฮผ = 0.0112, ฮด = 0.9132, ฯ = 0.0611
Given data: r_T = 0.04, r_{Tโ1} = 0.05, h_T = 0.5
We are asked for the predicted h_{T+1}.
Option-by-option analysis:
Option A: There is not enough data to compute hฬ_{T+1}.
- This is not correct. With the provided last-period variance h_T, the last return r_T, and the previous return r_{Tโ1}, together with the model parameters, one can compute ฮต_T and then propagate h to the next period u......Login to view full explanationLog in for full answers
We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!
Similar Questions
According to the GARCH model ฯTHURSDAY2=ฯ+ฮฑRBLANK12+ฮฒฯBLANK22\sigma_{THURSDAY}^2 = \omega + \alpha R_{BLANK1}^2 +\beta \sigma_{BLANK2}^2 (Hint: fill in day of the week like Monday, Tuesday...) BLANK1:[Fill in the blank], BLANK2:[Fill in the blank],
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters Parameters Estimates MLE ๐ 0.0112 ๐ฟ 0.932 ๐ 0.0811 and the variance-covariance matrix is ๐ ( ๐ ฬ ) = [ 0.0012 โ 0.012 0.001 โ 0.012 0.102 โ 0.003 0.001 โ 0.003 0.003 ] Assume the last observation in your sample has โ ๐ = 1.5056 . What is the value of the conditional variance ๐ ๐ โ 1 ( ๐ ๐ ) ?
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters Estimates Parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ Estimates 0.1911 0.9722 0.0011 0.9321 0.0821 Assume that the last 2 observations of the return process are ๐ ๐ = 0.07 and ๐ ๐ โ 1 = 0.03 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.55 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐ ๐ = 0.04 and ๐ ๐ โ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.5 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!