题目
题目

BTRY3010/BTRY5010/STSCI2200/STSCI5200 Lecture #22 ( Pages 104 - 107 )

简答题

An investigator wanted to construct a 92% confidence interval estimate for the difference of the means of  population A and population B. He took a simple random samples from each population, made the histograms above,  and computed a confidence interval of ( 5.8 , 15.7 ) according to the methods indicated in class. What was the ( approximate ) probability  that the investigator's procedure would produce an interval that would capture/surround the difference of the means of the given populations?   If it is not possible to answer this, enter -1. c07.p067.q008

题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
The problem asks for the approximate probability that the investigator's confidence interval would capture the true difference in means between populations A and B. Since the interval was constructed as a 92% confidence interval, by definition the procedure has a 0.92 (or 92%) long-run probability......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Exhibit 10-3 A statistics teacher wants to see if there is any difference in the abilities of students enrolled in statistics today and those enrolled five years ago. Final examination scores from a random sample of students enrolled today and from a random sample of students enrolled five years ago were selected. You are given the following information.   Today Five Years Ago 82 88 σ2 112.5 54 n 45 36 Refer to Exhibit 10-3. The standard error of is _____.

A random sample was taken from Population1 using the following code.  ################ rbeta(150,shape1=1,shape2=1) ################ The sample from Population 1 ############################ 0.73, 0.43, 0.8, 0.06, 0.37, 0.79, 0.31, 0.23, 0.28, 0.62, 0.07, 0.35, 0.73, 0.99, 0.13, 0.52, 0.51, 0.17, 0.21, 0.28, 0.18, 0.22, 0.47, 0.98, 0.27, 0.52, 0.56, 0.93, 0.68, 0.34, 0.09, 0.54, 0.35, 0.52, 0.92, 0.66, 0.65, 0.52, 0.14, 0.22, 0.57, 0.6, 0.24, 0.29, 0.75, 0.76, 0.36, 0.22, 0.54, 0.19, 0.35, 0.73, 0.37, 0.87, 0.08, 0.02, 0.64, 0.85, 0.28, 0.55, 0.01, 0.52, 0.25, 0.49, 0.77, 0.43, 0.96, 0.07, 0.44, 0.01, 0.32, 0.76, 0.27, 0.82, 0.9, 0.39, 0.67, 0.5, 0.47, 0.72, 0.72, 0.55, 0.12, 0.94, 0.28, 0.37, 0.14, 0.62, 0.36, 0.39, 0.71, 0.11, 0.12, 0.24, 0.06, 0.29, 0.9, 0.72, 0.89, 0.68, 0.73, 0.48, 0.82, 0.44, 0.74, 0.04, 0.24, 0.18, 0.35, 0.05, 0.74, 0.68, 0.08, 0.74, 0.58, 0.65, 0.63, 0.61, 0.31, 0.57, 0.69, 0.09, 0.58, 0.57, 0.54, 0.24, 0.53, 0.52, 0.75, 0.63, 0.48, 0.72, 0.3, 0.94, 0.38, 0.94, 0.62, 0.7, 0.74, 0.52, 0.97, 0.12, 0.95, 0.68, 0.87, 0.77, 0.02, 0.49, 0.9, 0.95 ########################################################################## A random sample was taken from Population1 using the following code.  ################ runif(50,min=0,max=1) ################ The sample from Population 2 ############################ 0.18, 0.7, 0.57, 0.17, 0.94, 0.94, 0.13, 0.83, 0.47, 0.55, 0.55, 0.24, 0.76, 0.18, 0.41, 0.85, 0.98, 0.23, 0.44, 0.07, 0.66, 0.39, 0.84, 0.15, 0.35, 0.49, 0.15, 0.36, 0.96, 0.13, 0.01, 0.16, 0.81, 0.87, 0.51, 0.63, 0.84, 0.28, 0.67, 0.15, 0.98, 0.3, 0.12, 0.16, 0.94, 0.79, 0.97, 0.35, 0.5, 0.81 ########################################################################## These samples have been checked, and they meet the necessary assumptions for constructing a 96% confidence interval for the difference between the means of these population. ( 1 - 2 ) What is the upper bound for this confidence interval? c07.p068.q001    

A random sample was taken from Population1 using the following code.  ################ rnorm( 150 , rbeta(1,shape1=1,shape2=1) , sd = 5 ) ################ The sample from Population 1 ############################ 1.74, 8.75, -4.84, 0.41, 1.48, 4.35, -0.38, 10.74, 0.12, 2.9, 5.72, -1.15, -4.38, 9.73, -10.74, 5.21, 0.99, 5.88, 2.98, 11.27, -5.18, 8.76, 10.59, 0.84, -11.44, 3.2, -2.17, 4.78, 2.26, 4.51, 2.41, 6.2, -0.61, -3.07, -2.16, -7.81, -3.7, -1.98, -0.42, -1.1, -8.98, -3.39, 10.33, 3.93, 10.77, -0.71, 0.36, -0.11, -5.18, -3.38, 11.15, -2, 7.19, -4.42, -9.01, -0.8, 5.49, 6.51, 9.17, -8.13, 10.97, -2.7, 1.61, 3.35, -3.28, -9.18, -1.58, 1.24, -3.66, -3.79, 2.47, 0.11, 2.99, 0.55, -3.72, 7.33, 4.67, 6.08, -6.24, 5.8, -7.66, -1.85, -6.05, -10.22, 9.93, -2.45, -0.61, -1.12, 2.75, 8.82, 9.22, -5.1, -5.98, -6.75, -5.45, 10.61, 0.85, -3.4, -2.19, 6.19, 2.12, -0.76, -2.93, -3.5, 11.06, 5.51, 10.86, -1.29, -0.94, -4.32, -0.44, 3.17, 7.61, 3.64, 3.1, 6.97, 6.55, 1.35, -3.1, 7.02, 1.51, 9.37, -1.34, -4.41, 3.5, -2.53, 4.01, -7.8, -7.9, 4.26, 2.47, 5.17, -9.27, 6.88, 6.82, 5.98, 4.75, 11.37, -6.45, -2.1, 2.86, -3.22, 1.24, 4.55, -2.45, 4.1, 3.56, -3.22, -4.17, 5.69 ########################################################################## A random sample was taken from Population1 using the following code.  ################ rnorm( 100 , runif(50,min=0,max=1) , sd = 5 ) ################ The sample from Population 2 ############################ -12.07, 3.09, -2.41, 4.13, 2.39, 4.64, 1.72, 6.21, -0.95, -3.33, -2.43, -8.39, -3.75, -2.61, -0.83, -1.06, -8.82, -3.98, 9.96, 3.19, 10.62, -1.14, 0.38, -0.77, -5.65, -3.7, 10.48, -2.45, 7.34, -5.11, -9.82, -1.45, 5.49, 6.57, 8.87, -8.31, 11, -3.23, 1.46, 2.68, -3.12, -9.7, -2.28, 0.58, -3.53, -3.81, 2.63, -0.36, 2.68, 0.54, -4.35, 7.22, 4.43, 5.43, -6.11, 5.92, -8.35, -1.83, -6.39, -10.49, 9.66, -3.03, -0.66, -1.75, 2.34, 8.86, 9.38, -5.69, -6.35, -7.49, -5.6, 10.18, 0.88, -4.06, -2.66, 5.86, 1.45, -1.21, -2.79, -4.18, 10.25, 4.86, 10.85, -1.24, -1.24, -4.51, -0.41, 2.64, 7.46, 2.97, 3.26, 6.45, 5.85, 0.7, -2.97, 7, 1.67, 8.9, -1.65, -4.41 ########################################################################## These samples have been checked, and they meet the necessary assumptions for constructing a 95% confidence interval for the difference between the means of these population. ( 1 - 2 ) What is the lower bound for this confidence interval? c07.p068.q007.2100    

A random sample was taken from Population1 using the following code.  ################ rnorm( 150 , rbeta(1,shape1=1,shape2=1) , sd = 5 ) ################ The sample from Population 1 ############################ 1.65, -3.44, 8.71, 2.38, -3.37, 3.17, 4.43, 3.61, -0.79, 8.29, 2.68, -2.37, -10.34, 6.36, 0.51, 0.65, 5.45, 4.84, 3.7, 5.33, 4.65, 1.11, -9.21, 3.83, 0.45, -0.04, -6.62, -1.66, 2.82, 7.53, 0.22, 2.67, 0.47, -6.15, -1.34, -1.24, 0.44, 6.23, 4.55, -0.09, -0.53, 4.22, 3.52, -2.71, -2.8, 2.56, 4.58, 0.17, 5.14, 2.73, -2.33, 2.44, -4.91, 7.9, 10.64, -1.1, -4.49, 3.58, 0.06, 12.74, 0.54, 4.18, 0.87, -2.98, 1.68, -8.29, 8.06, 1.5, 11.6, 3.11, -2.82, 3.79, -3.94, -5.53, 2.19, -1.48, 0.74, 1.11, -2.21, -2.11, 0.06, 6.62, -6.88, 3.7, 2.4, 6.05, -0.79, 2.58, 2.07, -1.98, 6.77, 6.54, 4.24, 8.67, 3.53, -5.65, -2.13, -5.39, -1.63, -2.37, 0.95, -3.82, 1.52, -2.54, 9.57, 4.32, 5.29, 2.66, 9.15, -2.44, -1.57, 7.9, -2.52, -0.3, -1.23, -0.87, -0.66, 3.21, -0.15, -1.8, 7.45, -0.34, -0.16, 0.23, 4.3, 0.37, 0.55, -2.67, -0.89, 1.04, -2.21, 3.39, -6.86, 2.27, -6.95, -0.77, -1.91, -2.53, 0.45, -8.84, 6.62, -7.59, -1.58, -4.85, -3.02, 11.17, 0.82, -5.7, -7.47, 2.99 ########################################################################## A random sample was taken from Population1 using the following code.  ################ rnorm( 100 , runif(50,min=0,max=1) , sd = 5 ) ################ The sample from Population 2 ############################ -12.07, 3.09, -2.41, 4.13, 2.39, 4.64, 1.72, 6.21, -0.95, -3.33, -2.43, -8.39, -3.75, -2.61, -0.83, -1.06, -8.82, -3.98, 9.96, 3.19, 10.62, -1.14, 0.38, -0.77, -5.65, -3.7, 10.48, -2.45, 7.34, -5.11, -9.82, -1.45, 5.49, 6.57, 8.87, -8.31, 11, -3.23, 1.46, 2.68, -3.12, -9.7, -2.28, 0.58, -3.53, -3.81, 2.63, -0.36, 2.68, 0.54, -4.35, 7.22, 4.43, 5.43, -6.11, 5.92, -8.35, -1.83, -6.39, -10.49, 9.66, -3.03, -0.66, -1.75, 2.34, 8.86, 9.38, -5.69, -6.35, -7.49, -5.6, 10.18, 0.88, -4.06, -2.66, 5.86, 1.45, -1.21, -2.79, -4.18, 10.25, 4.86, 10.85, -1.24, -1.24, -4.51, -0.41, 2.64, 7.46, 2.97, 3.26, 6.45, 5.85, 0.7, -2.97, 7, 1.67, 8.9, -1.65, -4.41 ########################################################################## These samples have been checked, and they meet the necessary assumptions for constructing a 95% confidence interval for the difference between the means of these population. ( 1 - 2 )   What is the upper bound for this confidence interval? c07.p068.q005.2100    

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!