Questions
Questions
Single choice

Find the value of c that makes the following function continuous for all real numbers. 𝑓 ( 𝑥 ) = { 𝑐 𝑥 2 + 3 if  𝑥 < − 2 𝑐 𝑥 − 1 if  𝑥 ≥ − 2   

Options
A.− 1 3
B.− 2 3
C.1
D.2 3
E.1 3
F.− 1
G.− 2
H.2
View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
We start by identifying the two pieces of the function and the point where continuity must be checked: at x = -2, since the definition changes there. Left-hand expression (for x < -2): f(x) = c x^2 + 3. As x approaches -2 from the left, the value tends to c(-2)^2 + 3 = 4c + 3. Right-hand expression (for x ≥ -2): f(x) = c x - 1. At x = -2, the function value is f(-2) = c(-2) - 1 = -2c - 1. For continuity at x = -2, the left-hand......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Determine the following statements are True or False. 1) There is no solution of 𝑒 𝑥 + 𝑒 − 𝑥 2 = 2 on [-2,2]. [ Select ] True False 2) Let f be a continuous function on [0,1] such that 0 < 𝑓 ( 𝑥 ) < 1 for all 𝑥 ∈ [ 0 , 1 ] . We can conclude that there exists a point 𝑎 ∈ [ 0 , 1 ] such that 𝑓 ( 𝑎 ) = 𝑎 . [ Select ] True False 3) If a function f is continuous on [a,b], then there is a c in [a,b] with 𝑓 ( 𝑐 ) = 𝑓 ( 𝑎 ) + 𝑓 ( 𝑏 ) 2 . [ Select ] True False 4) The function 𝑓 ( 𝑥 ) = 1 + 𝑥 2 𝑥 2 − 4 has a maximum on [-3,3]. [ Select ] True False

Find numbers a and b, or k, so that f is continuous at every point.

The function [math: f(x)={−2x+4if x<0,−4x−6if x>0]f(x)=\left \{\begin {array}{ll}-2x+4&\text {if }x<0,\\-4x-6&\text {if }x>0\end {array}\right . is continuous.

Suppose we know the following information about the function  𝑓 ( 𝑥 ) :  𝑓 ( − 1 ) = − 4 , 𝑓 ( 2.5 ) = 3 , 𝑓 ( 𝜋 ) = 2.4 and 𝑓 ( 1 ) does not exist lim 𝑥 ⟶ − 1 − 𝑓 ( 𝑥 ) = − 4 lim 𝑥 ⟶ − 1 + 𝑓 ( 𝑥 ) = − 4 lim 𝑥 ⟶ 2.5 + 𝑓 ( 𝑥 ) = − ∞ lim 𝑥 ⟶ 𝜋 𝑓 ( 𝑥 ) = 0 lim 𝑥 ⟶ 8 − 𝑓 ( 𝑥 ) = 3 lim 𝑥 ⟶ 8 + 𝑓 ( 𝑥 ) = 3.01   What does this information tell us about the continuity of 𝑓 ( 𝑥 ) ? At 𝑥 = − 1 , 𝑓 ( 𝑥 ) is/has a [ Select ] jump discontinuity infinite discontinuity continuous discontinuous, but there is not enough information to tell which type there is not enough information to tell anything removable discontinuity . At 𝑥 = 1 , 𝑓 ( 𝑥 )  is/has a [ Select ] infinite discontinuity continuous there is not enough information to tell anything jump discontinuity removable discontinuity discontinuous, but there is not enough information to tell which type . At 𝑥 = 2.5 , 𝑓 ( 𝑥 )  is/has a [ Select ] continuous discontinuous, but there is not enough information to tell which type removable discontinuity jump discontinuity there is not enough information to tell anything infinite discontinuity . At 𝑥 = 𝜋 , 𝑓 ( 𝑥 )  is/has a [ Select ] there is not enough information to tell anything discontinuous, but there is not enough information to tell which type jump discontinuity continuous infinite discontinuity removable discontinuity . At 𝑥 = 8 , 𝑓 ( 𝑥 )  is/has a [ Select ] jump discontinuity there is not enough information to tell anything continuous removable discontinuity infinite discontinuity discontinuous, but there is not enough information to tell which type .

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!