Questions
Single choice
MTH1010_09_07_4
Options
A.a. a)
B.b. b)
C.c. c)
D.d. d)

View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We start by examining the given rational function: f(x) = (3x^3 - 21x^2 + 36x) / (x^2 - 7x + 12).
First, factor both numerator and denominator. The numerator factors as 3x^3 - 21x^2 + 36x = 3x(x^2 - 7x + 12) = 3x(x - 3)(x - 4). The denominator factors as x^2 - 7x + 12 = (x - 3)(x - 4).
Thus, for all x except where the denominator is......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
Determine the following statements are True or False. 1) There is no solution of 𝑒 𝑥 + 𝑒 − 𝑥 2 = 2 on [-2,2]. [ Select ] True False 2) Let f be a continuous function on [0,1] such that 0 < 𝑓 ( 𝑥 ) < 1 for all 𝑥 ∈ [ 0 , 1 ] . We can conclude that there exists a point 𝑎 ∈ [ 0 , 1 ] such that 𝑓 ( 𝑎 ) = 𝑎 . [ Select ] True False 3) If a function f is continuous on [a,b], then there is a c in [a,b] with 𝑓 ( 𝑐 ) = 𝑓 ( 𝑎 ) + 𝑓 ( 𝑏 ) 2 . [ Select ] True False 4) The function 𝑓 ( 𝑥 ) = 1 + 𝑥 2 𝑥 2 − 4 has a maximum on [-3,3]. [ Select ] True False
Find numbers a and b, or k, so that f is continuous at every point.
The function [math: f(x)={−2x+4if x<0,−4x−6if x>0]f(x)=\left \{\begin {array}{ll}-2x+4&\text {if }x<0,\\-4x-6&\text {if }x>0\end {array}\right . is continuous.
Suppose we know the following information about the function 𝑓 ( 𝑥 ) : 𝑓 ( − 1 ) = − 4 , 𝑓 ( 2.5 ) = 3 , 𝑓 ( 𝜋 ) = 2.4 and 𝑓 ( 1 ) does not exist lim 𝑥 ⟶ − 1 − 𝑓 ( 𝑥 ) = − 4 lim 𝑥 ⟶ − 1 + 𝑓 ( 𝑥 ) = − 4 lim 𝑥 ⟶ 2.5 + 𝑓 ( 𝑥 ) = − ∞ lim 𝑥 ⟶ 𝜋 𝑓 ( 𝑥 ) = 0 lim 𝑥 ⟶ 8 − 𝑓 ( 𝑥 ) = 3 lim 𝑥 ⟶ 8 + 𝑓 ( 𝑥 ) = 3.01 What does this information tell us about the continuity of 𝑓 ( 𝑥 ) ? At 𝑥 = − 1 , 𝑓 ( 𝑥 ) is/has a [ Select ] jump discontinuity infinite discontinuity continuous discontinuous, but there is not enough information to tell which type there is not enough information to tell anything removable discontinuity . At 𝑥 = 1 , 𝑓 ( 𝑥 ) is/has a [ Select ] infinite discontinuity continuous there is not enough information to tell anything jump discontinuity removable discontinuity discontinuous, but there is not enough information to tell which type . At 𝑥 = 2.5 , 𝑓 ( 𝑥 ) is/has a [ Select ] continuous discontinuous, but there is not enough information to tell which type removable discontinuity jump discontinuity there is not enough information to tell anything infinite discontinuity . At 𝑥 = 𝜋 , 𝑓 ( 𝑥 ) is/has a [ Select ] there is not enough information to tell anything discontinuous, but there is not enough information to tell which type jump discontinuity continuous infinite discontinuity removable discontinuity . At 𝑥 = 8 , 𝑓 ( 𝑥 ) is/has a [ Select ] jump discontinuity there is not enough information to tell anything continuous removable discontinuity infinite discontinuity discontinuous, but there is not enough information to tell which type .
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!