Questions
Questions

MATH1061/1002/1021 (ND) Early Feedback Task: MATH1061 Canvas Quiz 1

Single choice

Which of the following options lists all of the solutions to the following equation? ๐‘ง 3 = โˆ’ 1 + 3 ๐‘– .

View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
Question restatement: The problem asks for all solutions to z^3 = -1 + 3i. The provided answer list appears to include three candidate roots, but there is no separate list of answer choices labeled A, B, C, etc. We will evaluate the given options as potential cube roots. Step-by-step evaluation: - First, convert the target complex number to polar form. The complex number -1 + 3i has magnitude r = sqrt((-1)^2 + 3^2) = sqrt(10), and an argument theta = arctan(3/(-1)) relative to the positive real axis places it in the second quadran......Login to view full explanation

Log in for full answers

We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!

Similar Questions

( 6 โˆ’ 6 ๐‘– โˆ’ 9 3 โˆ’ 27 ๐‘– ) 256 = _ _ _ _ _ _ _ _ _ _ ย  Hints: Convert the complex numbers to polar form. Ifย ย  ๐‘ง = ๐‘Ÿ ( cos โก ๐œƒ + ๐‘– sin โก ๐œƒ ) then ย  ๐‘ง ๐‘› = ๐‘Ÿ ๐‘› ( cos โก ๐‘› ๐œƒ + ๐‘– sin โก ๐‘› ๐œƒ ) . If ๐‘ง 1 = ๐‘Ÿ 1 ( cos โก ๐œƒ 1 + ๐‘– sin โก ๐œƒ 1 ) ย  and ย  ๐‘ง 2 = ๐‘Ÿ 2 ( cos โก ๐œƒ 2 + ๐‘– sin โก ๐œƒ 2 ) then: ย  ย  ย ย ย  ย  ๐‘ง 1 ๐‘ง 2 = ๐‘Ÿ 1 ๐‘Ÿ 2 [ cos โก ( ๐œƒ 1 + ๐œƒ 2 ) + ๐‘– sin โก ( ๐œƒ 1 + ๐œƒ 2 ) ] ย  and ย  ๐‘ง 1 ๐‘ง 2 = ๐‘Ÿ 1 ๐‘Ÿ 2 [ cos โก ( ๐œƒ 1 โˆ’ ๐œƒ 2 ) + ๐‘– sin โก ( ๐œƒ 1 โˆ’ ๐œƒ 2 ) ] .

The polar form of ย  ๐‘ง = โˆ’ 6 7 + 3 2 7 ๐‘– is: Hint: ๐‘ง = ๐‘Ž + ๐‘ ๐‘– = ๐‘Ÿ ( cos โก ๐œƒ + ๐‘– sin โก ๐œƒ ) whereย  ๐‘Ÿ = ๐‘Ž 2 + ๐‘ 2 ย  and ย  ๐œƒ = tan โˆ’ 1 โก ๐‘ ๐‘Ž . ย ย ย ย ย ย ย ย  Also, don't forget to plot the complex number on the Argand diagram.

Given four complex numbers ย  ๐‘ง 1 = 2 + 3 ๐‘– , ๐‘ง 2 = โˆ’ 7 โˆ’ 5 ๐‘– , ๐‘ง 3 = โˆ’ 9 + 7 ๐‘– , ๐‘ง 4 = 2 + 5 ๐‘– . Calculate ย  | ๐‘ง 3 ยฏ ๐‘ง 1 + ๐‘ง 2 ๐‘ง 4 | . Formulae: Ifย  ๐‘ง = ๐‘Ž + ๐‘ ๐‘– ย  thenย  ๐‘ง ยฏ = ๐‘Ž โˆ’ ๐‘ ๐‘– ย  and ย  | ๐‘ง | = ๐‘Ž 2 + ๐‘ 2 . ๐‘Ž + ๐‘ ๐‘– ๐‘ + ๐‘‘ ๐‘– = ( ๐‘Ž + ๐‘ ๐‘– ) ( ๐‘ โˆ’ ๐‘‘ ๐‘– ) ( ๐‘ + ๐‘‘ ๐‘– ) ( ๐‘ โˆ’ ๐‘‘ ๐‘– ) = โ‹ฏ

The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!