Questions
MATH1061/1002/1021 (ND) Early Feedback Task: MATH1061 Canvas Quiz 1
Single choice
Which of the following options lists all of the solutions to the following equation? ๐ง 3 = โ 1 + 3 ๐ .
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
Question restatement: The problem asks for all solutions to z^3 = -1 + 3i. The provided answer list appears to include three candidate roots, but there is no separate list of answer choices labeled A, B, C, etc. We will evaluate the given options as potential cube roots.
Step-by-step evaluation:
- First, convert the target complex number to polar form. The complex number -1 + 3i has magnitude r = sqrt((-1)^2 + 3^2) = sqrt(10), and an argument theta = arctan(3/(-1)) relative to the positive real axis places it in the second quadran......Login to view full explanationLog in for full answers
We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!
Similar Questions
( 6 โ 6 ๐ โ 9 3 โ 27 ๐ ) 256 = _ _ _ _ _ _ _ _ _ _ ย Hints: Convert the complex numbers to polar form. Ifย ย ๐ง = ๐ ( cos โก ๐ + ๐ sin โก ๐ ) then ย ๐ง ๐ = ๐ ๐ ( cos โก ๐ ๐ + ๐ sin โก ๐ ๐ ) . If ๐ง 1 = ๐ 1 ( cos โก ๐ 1 + ๐ sin โก ๐ 1 ) ย and ย ๐ง 2 = ๐ 2 ( cos โก ๐ 2 + ๐ sin โก ๐ 2 ) then: ย ย ย ย ย ย ๐ง 1 ๐ง 2 = ๐ 1 ๐ 2 [ cos โก ( ๐ 1 + ๐ 2 ) + ๐ sin โก ( ๐ 1 + ๐ 2 ) ] ย and ย ๐ง 1 ๐ง 2 = ๐ 1 ๐ 2 [ cos โก ( ๐ 1 โ ๐ 2 ) + ๐ sin โก ( ๐ 1 โ ๐ 2 ) ] .
The polar form of ย ๐ง = โ 6 7 + 3 2 7 ๐ is: Hint: ๐ง = ๐ + ๐ ๐ = ๐ ( cos โก ๐ + ๐ sin โก ๐ ) whereย ๐ = ๐ 2 + ๐ 2 ย and ย ๐ = tan โ 1 โก ๐ ๐ . ย ย ย ย ย ย ย ย Also, don't forget to plot the complex number on the Argand diagram.
Given four complex numbers ย ๐ง 1 = 2 + 3 ๐ , ๐ง 2 = โ 7 โ 5 ๐ , ๐ง 3 = โ 9 + 7 ๐ , ๐ง 4 = 2 + 5 ๐ . Calculate ย | ๐ง 3 ยฏ ๐ง 1 + ๐ง 2 ๐ง 4 | . Formulae: Ifย ๐ง = ๐ + ๐ ๐ ย thenย ๐ง ยฏ = ๐ โ ๐ ๐ ย and ย | ๐ง | = ๐ 2 + ๐ 2 . ๐ + ๐ ๐ ๐ + ๐ ๐ = ( ๐ + ๐ ๐ ) ( ๐ โ ๐ ๐ ) ( ๐ + ๐ ๐ ) ( ๐ โ ๐ ๐ ) = โฏ
The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!