Questions
ENG1090 - MUM S1 2025 Practice Midterm test
Multiple fill-in-the-blank
Question textWrite \(\displaystyle z = \sqrt{2}e^{\frac{3\pi}{4}i}\) in cartesian form. \(z=\) Answer 1 Question 11[input] \(+\) Answer 2 Question 11[input] \(i\)
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
We start with z = sqrt(2) e^{(3π/4) i}, which is a complex number in polar/exponential form.
To convert to cartesian form, use Euler's representation: e^{iθ} = cos θ + i......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
Similar Questions
( 6 − 6 𝑖 − 9 3 − 27 𝑖 ) 256 = _ _ _ _ _ _ _ _ _ _ Hints: Convert the complex numbers to polar form. If 𝑧 = 𝑟 ( cos 𝜃 + 𝑖 sin 𝜃 ) then 𝑧 𝑛 = 𝑟 𝑛 ( cos 𝑛 𝜃 + 𝑖 sin 𝑛 𝜃 ) . If 𝑧 1 = 𝑟 1 ( cos 𝜃 1 + 𝑖 sin 𝜃 1 ) and 𝑧 2 = 𝑟 2 ( cos 𝜃 2 + 𝑖 sin 𝜃 2 ) then: 𝑧 1 𝑧 2 = 𝑟 1 𝑟 2 [ cos ( 𝜃 1 + 𝜃 2 ) + 𝑖 sin ( 𝜃 1 + 𝜃 2 ) ] and 𝑧 1 𝑧 2 = 𝑟 1 𝑟 2 [ cos ( 𝜃 1 − 𝜃 2 ) + 𝑖 sin ( 𝜃 1 − 𝜃 2 ) ] .
The polar form of 𝑧 = − 6 7 + 3 2 7 𝑖 is: Hint: 𝑧 = 𝑎 + 𝑏 𝑖 = 𝑟 ( cos 𝜃 + 𝑖 sin 𝜃 ) where 𝑟 = 𝑎 2 + 𝑏 2 and 𝜃 = tan − 1 𝑏 𝑎 . Also, don't forget to plot the complex number on the Argand diagram.
Given four complex numbers 𝑧 1 = 2 + 3 𝑖 , 𝑧 2 = − 7 − 5 𝑖 , 𝑧 3 = − 9 + 7 𝑖 , 𝑧 4 = 2 + 5 𝑖 . Calculate | 𝑧 3 ¯ 𝑧 1 + 𝑧 2 𝑧 4 | . Formulae: If 𝑧 = 𝑎 + 𝑏 𝑖 then 𝑧 ¯ = 𝑎 − 𝑏 𝑖 and | 𝑧 | = 𝑎 2 + 𝑏 2 . 𝑎 + 𝑏 𝑖 𝑐 + 𝑑 𝑖 = ( 𝑎 + 𝑏 𝑖 ) ( 𝑐 − 𝑑 𝑖 ) ( 𝑐 + 𝑑 𝑖 ) ( 𝑐 − 𝑑 𝑖 ) = ⋯
The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!