Questions
SMAT011 Weekly Quiz 3 |LA003
Single choice
The polar form of ย ๐ง = โ 6 7 + 3 2 7 ๐ is: Hint: ๐ง = ๐ + ๐ ๐ = ๐ ( cos โก ๐ + ๐ sin โก ๐ ) whereย ๐ = ๐ 2 + ๐ 2 ย and ย ๐ = tan โ 1 โก ๐ ๐ . ย ย ย ย ย ย ย ย Also, don't forget to plot the complex number on the Argand diagram.
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The question as provided asks for the polar form of z, with a hint that z = a + b i = r (cos ฮธ + i sin ฮธ), where r = sqrt(a^2 + b^2) and ฮธ = arctan(b/a). It also mentions plotting the point on the Argand diagram. However, there is a significant formatting problem in the input: the complex number z is written as "โ 6 7 + 3 2 7 i" which is not a standard or parseable representation of a + bi, and the answer options section is empty, making it impossible to identify what choices (if any) we should evaluate.
First, a general step-by-step approach to converting a complex number to pola......Login to view full explanationLog in for full answers
We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!
Similar Questions
( 6 โ 6 ๐ โ 9 3 โ 27 ๐ ) 256 = _ _ _ _ _ _ _ _ _ _ ย Hints: Convert the complex numbers to polar form. Ifย ย ๐ง = ๐ ( cos โก ๐ + ๐ sin โก ๐ ) then ย ๐ง ๐ = ๐ ๐ ( cos โก ๐ ๐ + ๐ sin โก ๐ ๐ ) . If ๐ง 1 = ๐ 1 ( cos โก ๐ 1 + ๐ sin โก ๐ 1 ) ย and ย ๐ง 2 = ๐ 2 ( cos โก ๐ 2 + ๐ sin โก ๐ 2 ) then: ย ย ย ย ย ย ๐ง 1 ๐ง 2 = ๐ 1 ๐ 2 [ cos โก ( ๐ 1 + ๐ 2 ) + ๐ sin โก ( ๐ 1 + ๐ 2 ) ] ย and ย ๐ง 1 ๐ง 2 = ๐ 1 ๐ 2 [ cos โก ( ๐ 1 โ ๐ 2 ) + ๐ sin โก ( ๐ 1 โ ๐ 2 ) ] .
Given four complex numbers ย ๐ง 1 = 2 + 3 ๐ , ๐ง 2 = โ 7 โ 5 ๐ , ๐ง 3 = โ 9 + 7 ๐ , ๐ง 4 = 2 + 5 ๐ . Calculate ย | ๐ง 3 ยฏ ๐ง 1 + ๐ง 2 ๐ง 4 | . Formulae: Ifย ๐ง = ๐ + ๐ ๐ ย thenย ๐ง ยฏ = ๐ โ ๐ ๐ ย and ย | ๐ง | = ๐ 2 + ๐ 2 . ๐ + ๐ ๐ ๐ + ๐ ๐ = ( ๐ + ๐ ๐ ) ( ๐ โ ๐ ๐ ) ( ๐ + ๐ ๐ ) ( ๐ โ ๐ ๐ ) = โฏ
The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).
Find the standard form of the complex number with modulus [math]2 and argument [math]\dfrac {\pi }{5}. (Correct the answer to 2 decimal places.)
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!