Questions
SMAT011 Weekly Quiz 3 |LA003
Single choice
( 6 โ 6 ๐ โ 9 3 โ 27 ๐ ) 256 = _ _ _ _ _ _ _ _ _ _ ย Hints: Convert the complex numbers to polar form. Ifย ย ๐ง = ๐ ( cos โก ๐ + ๐ sin โก ๐ ) then ย ๐ง ๐ = ๐ ๐ ( cos โก ๐ ๐ + ๐ sin โก ๐ ๐ ) . If ๐ง 1 = ๐ 1 ( cos โก ๐ 1 + ๐ sin โก ๐ 1 ) ย and ย ๐ง 2 = ๐ 2 ( cos โก ๐ 2 + ๐ sin โก ๐ 2 ) then: ย ย ย ย ย ย ๐ง 1 ๐ง 2 = ๐ 1 ๐ 2 [ cos โก ( ๐ 1 + ๐ 2 ) + ๐ sin โก ( ๐ 1 + ๐ 2 ) ] ย and ย ๐ง 1 ๐ง 2 = ๐ 1 ๐ 2 [ cos โก ( ๐ 1 โ ๐ 2 ) + ๐ sin โก ( ๐ 1 โ ๐ 2 ) ] .
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
The prompt presents a complex-number exponentiation task using polar form, but the provided data for answer choices is incomplete. I will first restate what is visible and then outline the full solution approach, while also explaining what is missing and how to proceed if the options were present.
Re-stated question elements:
- We are given a complex number expressed in a fragmented form: (6 โ 6i โ 9^3 โ 27i) and then the operation z^256 on that quantity, i.e., (6 โ 6i โ 9^3 โ 27i)^256, with hints about converting to polar form and using De Moivreโs formula: if z = r(cos ฮธ + i sin ฮธ) then z^n = r^n (cos(nฮธ) + i sin(nฮธ)). The hints also show how to multiply arguments when multiplying complex numbers, and how to raise a single complex number to a power.
- The target is to fill in blanks corresponding to the resulting expression after raising to the 256th power, presumably in polar for......Login to view full explanationLog in for full answers
We've collected overย 50,000 authentic exam questionsย andย detailed explanationsย from around the globe. Log in now and get instant access to the answers!
Similar Questions
The polar form of ย ๐ง = โ 6 7 + 3 2 7 ๐ is: Hint: ๐ง = ๐ + ๐ ๐ = ๐ ( cos โก ๐ + ๐ sin โก ๐ ) whereย ๐ = ๐ 2 + ๐ 2 ย and ย ๐ = tan โ 1 โก ๐ ๐ . ย ย ย ย ย ย ย ย Also, don't forget to plot the complex number on the Argand diagram.
Given four complex numbers ย ๐ง 1 = 2 + 3 ๐ , ๐ง 2 = โ 7 โ 5 ๐ , ๐ง 3 = โ 9 + 7 ๐ , ๐ง 4 = 2 + 5 ๐ . Calculate ย | ๐ง 3 ยฏ ๐ง 1 + ๐ง 2 ๐ง 4 | . Formulae: Ifย ๐ง = ๐ + ๐ ๐ ย thenย ๐ง ยฏ = ๐ โ ๐ ๐ ย and ย | ๐ง | = ๐ 2 + ๐ 2 . ๐ + ๐ ๐ ๐ + ๐ ๐ = ( ๐ + ๐ ๐ ) ( ๐ โ ๐ ๐ ) ( ๐ + ๐ ๐ ) ( ๐ โ ๐ ๐ ) = โฏ
The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).
Find the standard form of the complex number with modulus [math]2 and argument [math]\dfrac {\pi }{5}. (Correct the answer to 2 decimal places.)
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!