Questions
Multiple fill-in-the-blank
<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>The differentiable functions </mtext><mi>f</mi><mtext> and </mtext><mi>g</mi><mtext> are defined for all real numbers </mtext><mi>x</mi><mo>.</mo><mtext> Values of </mtext><mi>f</mi><mo>,</mo><msup><mi>f</mi><mo>′</mo></msup><mo>,</mo><mi>g</mi><mo>,</mo><mtext> and </mtext><msup><mi>g</mi><mo>′</mo></msup><mtext> for various values of </mtext><mi>x</mi><mtext> are given in the table.</mtext></math>\text{The differentiable functions } f \text{ and } g \text{ are defined for all real numbers } x. \text{ Values of } f, f', g, \text{ and } g' \text{ for various values of } x \text{ are given in the table.} <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Suppose that</mtext><mtext> </mtext><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mtext> </mtext><mtext>and</mtext><mtext> </mtext><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>.</mo><mtext> </mtext><mtext>Determine the following quantities.</mtext></math>\text{Suppose that} \ h(x)=f(g(x)) \ \text{and} \ H(x)=f(g(x)). \ \text{Determine the following quantities.} (a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mo>′</mo></msup><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo></math>h'(1)=[Fill in the blank], (b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>′</mo></msup><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo></math>H'(1)=[Fill in the blank],
View Explanation
Verified Answer
Please login to view
Step-by-Step Analysis
This question asks us to determine derivatives at x = 1 for composite functions built from f and g, namely h(x) = f(g(x)) and H(x) = f(g(x)).
First, recall the chain rule: if h(x) = f(g(x)), then h'(x) = f'(g(x)) · g'(x). To evaluate h'(1), we need the values of g(1), f'(g(1)), and g'(1) from the given table. Similarly, since H is defined identically as H(x) = f(g(x)), we h......Login to view full explanationLog in for full answers
We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!
More Practical Tools for Students Powered by AI Study Helper
Making Your Study Simpler
Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!