Questions
Questions

COMP30026_2025_SM2 2025 sample exam

Matching

Let L be a language defined as follows: L = {w | w <- {0,1}* && w does not have any 1s that are separated only by 2n 0s where n ∈ ℕ\{0} } examples: "11", "10001", "0110" are in L "1001", "100001"  are not in L Which of the following attempts to prove that L is a non-regular language provides a valid fooling set 'S' + algorithm to choose a distinguishing suffix for a pair of elements in S? Select the most specific answer from the drop-downs below corresponding to the correctness each of the following proofs. Attempt #1: S = { 11, 1001, 100001, ...} = { 102m1 | m ∈ ℕ } ALG = " Given two elements from S 102i and 102j, where i < j, choose suffix 02i1 " Attempt #2: S = { 1, 110, 11100, ...} = { 1m0m-1 | m ∈ ℕ } ALG = " Given two elements from S 1i0i-1 and 1j0j-1, where i < j, choose suffix 0i1 " Attempt #3: S = { 1, 110, 11100, ...} = { 1m0m-1 | m ∈ ℕ } ALG = " Given two elements from S 1i0i-1 and 1j0j-1, where i < j, choose suffix 02j1 " Attempt #4: S = { 100, 110000, 11100000000, ...} = { 1m02^m | m ∈ ℕ\{0} } ALG = " Given two elements from S 1i02^i and 1j02^j, where i < j, choose suffix 02^i1" 1: Attempt #1 2: Attempt #2 3: Attempt #3 4: Attempt #4

Options
A.False - S not a fooling set.
B.False - Insufficient proof.
C.False - S is a fooling set, but ALG does not always choose a distinguishing suffix.
D.True - Valid proof.
View Explanation

View Explanation

Verified Answer
Please login to view
Step-by-Step Analysis
The problem asks us to evaluate four proposed fooling-set proofs for the non-regularity of a language L, by inspecting the given fooling set S and the proposed distinguishing suffix algorithm ALG, then selecting the most specific correct assessment among the four attempts. Option 1: "False - S is a fooling set, but ALG does not always choose a distinguishing suffix." - This claim asserts that S qualifies as a fooling set but the algorithm ALG fails to always pick a distinguishing suffix for all pairs. To evaluate this, we would need to verify two things: (a) S meets the fooling-set criteria (for all i, x_i y_i ∈ L, and for i ≠ j, x_i y_j ∉ L for some appropriate y_j), and (b) the particular suffix chosen by ALG when given a pair (102i, 102j) with i < j (namely 02i1) actually distinguishes x_i from x_j. The reasoning in this option is inconclusive without checking the detailed membership of the concatenations for all i, j and for the specified suffixes. In many standard fooling-set arguments, careless choices of suffix fail to disti......Login to view full explanation

Log in for full answers

We've collected over 50,000 authentic exam questions and detailed explanations from around the globe. Log in now and get instant access to the answers!

Similar Questions

Let L be a language defined as follows: L = { w | w ∈ {0,1}* && w does not have any 1s that are separated only by 2*n 0's where n ∈ ℕ\{0} } examples: "11", "101", "00", "010" are in L "1001", "10100001" are not in L Which of the following attempts to prove that L is a non-regular language provides a valid fooling set 'S' + algorithm to choose a distinguishing suffix for a pair of elements in S? For each of the following attempts, select the most specific answer from the respective drop-down. Attempt #1: S = { 1, 100, 10000, ...} = { 102m | m ∈ ℕ } ALG = " Given two elements from S 102i and 102j, where i < j, choose suffix 02i1 " Attempt #2: S = { 1, 10, 100, ...} = { 10m | m ∈ ℕ } ALG = " Given two elements from S 10i and 10j, where i < j: IF (i even and j odd || j even and i odd) -> Choose suffix "1" ELSE -> Choose suffix "0i1" " Attempt #3: S = { 0, 10, 100 } ALG = " Choose the suffix according to the following map of element pairings: (0,10) -> choose suffix "01" (0,100) -> choose suffix "1" (10,100) -> choose suffix "1" " 1: Attempt #1 2: Attempt #2 3: Attempt #3

Let 𝐿  be the language consisting of bit strings of the form 𝑤 𝑤 . More precisely,  𝐿 = { 𝑤 𝑤 ∣ 𝑤 ∈ Σ ∗ } . So, 𝐿 contains 𝜖 , 00 , 11 , 1010 , 0101 , 1111 , 101101 , … Select all options that are fooling sets of size at least k.

L = {(01)n(10)m | n ≥ 0, m ≥ 2} is a regular language. Select the errors that are present in the following fooling set ‘proof’ that L is not regular: Proof (attempt): Suppose there is a DFA with k states that recognises L. Consider the set S = {(01)n | 1 ≤ n ≤ k}. Every pair of strings in S can be written as (01)i and (01)j, with i<j. These two strings are distinguishable with respect to L with the distinguishing suffix (10)i, as (01)i(10)i is in L but (01)j(10)i isn't. Thus every pair of distinct strings in S is distinguishable with respect to L, and so S is a fooling set of size k. Thus, there cannot exist a DFA with k states that recognises L. Because k was arbitrary, no DFA that recognises L can exist, and so L is not regular.

In a consumer society, many adults channel creativity into buying things

More Practical Tools for Students Powered by AI Study Helper

Join us and instantly unlock extensive past papers & exclusive solutions to get a head start on your studies!